

Olympe pour des fermes agroforestières de la région Centre-Val de Loire

Rapport de stage de Master 1 : Statistiques, Probabilités et Mathématiques Appliquées

> Doria Courcier 2 mai – 28 juillet 2017

Maître de stage : Frédérique Santi, chargée de recherche

Table des matières

Re	mer	ciements	. 3
Int	rodu	ıction	. 4
I.	St	ructure d'accueil, contexte et objectif du stage	. 4
	1.	L'INRA	. 4
	2.	Unité de Recherche AGPF	. 5
	3.	SPEAL et SPEAL 2	. 5
	4.	Stage	. 5
II.	Di	spositifs et préparation des fichiers	. 7
	1.	Plantations étudiées	. 7
	2.	Préparation des fichiers pour analyse	. 9
	a.	Sélection des données	. 9
	b.	Ajustement des données	11
	3.	Création du dataframe à analyser	11
III.		Analyse	18
	1.	Aperçu de la plantation	18
	2.	Cas particulier : simulation de densification	23
	3.	Sélections aléatoires	26
	4.	Compilation des directions	27
	5.	Sortie tableau	28
IV.		Interprétation des résultats	29
V.	Ol	ympe	33
	1.	Logiciel Olympe	33
	2.	Adaptation pour des fermes agroforestières européennes	33
	a.	Théorie	33
	b.	Pratique	35
VI.		Discussion et perspective	37
Glo	ossai	re	38
Tal	ble c	les illustrations	38
Bik	oliog	raphie	39
Δn	nexe		39

Remerciements

Je souhaite dans un premier temps remercier l'INRA Centre-Val de Loire ainsi que l'ensemble du personnel pour m'avoir accueillie pendant ces 3 mois de stage. Leur bienveillance a permis de faciliter mon intégration temporaire au sein du service.

Je remercie tout particulièrement Frédérique Santi, ma maître de stage, qui m'a aidée, s'est rendue disponible et m'a fait part à chaque instant de ses conseils.

Je tiens à remercier toutes les personnes que j'ai rencontrées et qui m'ont consacré du temps dont les membres de l'Association d'Agroforesterie de la Région Cente (a2rc) qui ont partagé avec moi leur passion.

Je suis également reconnaissante à l'équipe pédagogique de l'Université d'Orléans au sein de laquelle j'effectue ma formation.

Introduction

Dans le cadre de ma 1^{ère} année de Master en Statistiques, Probabilités et Mathématiques Appliquées au sein de l'Université d'Orléans, j'ai effectué un stage dans l'Unité de Recherche Amélioration, Génétique et Physiologie Forestière (AGPF) de l'INRA d'Orléans (Institut National de la Recherche Agronomique). Ce stage d'une durée de 3 mois s'est déroulé sous la direction de Frédérique Santi, chargée de recherche dans l'unité. Le travail qui m'a été confié fait partie du projet régional de Sélection Participative d'Espèces Annuelles ou Ligneuses adaptées à des pratiques agroécologiques (SPEAL) qui a débuté en 2013.

J'ai pu m'appuyer sur le travail effectué par Estelle Moulin dont le sujet du stage était "Sélection d'arbres en lignes agroforestières : deux méthodes". Une partie de son étude, effectuée sur 3 plantations, a été de regrouper les plants en couples ou en trios, d'effectuer une éclaircie et d'observer l'impact sur la quantité de bois totale au bout de 30 ans (Moulin E., 2016). Pour mon stage, le nombre de plantations est de 15 et seule la sélection au sein de couples est effectuée. Le code *R* d'Estelle Moulin a été retravaillé pour s'adapter à un cas général de plantation et des analyses supplémentaires ont été réalisées dont la distinction de la qualité du bois.

I. Structure d'accueil, contexte et objectif du stage

1. L'INRA

Fondé en 1946, l'Institut National de la Recherche Agronomique (INRA) est un établissement public à caractère scientifique et technologique (EPST). Il est sous l'autorité du Ministère chargé de la Recherche et du Ministère chargé de l'Agriculture. Il est le premier institut de recherche agronomique en Europe et est classé deuxième au monde pour ses publications.

L'INRA regroupe 8 042 chercheurs, techniciens, ingénieurs et assistants ingénieurs présents sur tout le territoire national au sein de 17 centres de recherche qui comporte un total de 184 unités de recherche et 45 unités expérimentales. L'INRA poursuit des recherches dans 13 grands thèmes, correspondant à des départements, allant de l'alimentation humaine à la biologie et l'amélioration des plantes en passant par les sciences pour l'action et le développement.

Au sein de la région Centre, le centre de recherche INRA Centre-Val de Loire est implanté sur 3 sites : Ardon (lieu du stage, près d'Orléans), Nouzilly (près de Tours) et Osmoy (près de Bourges). A eux 3, ils regroupent près de 900 agents dont 640 sont des titulaires et se compose de 3 pôles de recherche :

- Biologie animale intégrative, santés animale et publique et gestion durable des productions animales,
- Biologie intégrative des arbres et organismes associés, gestion durable des écosystèmes forestiers
- Dynamique des sols et gestion de l'environnement.

Pour conduire des recherches dans chacun de ces axes, l'INRA Centre-Val de Loire dispose de 8 unités de recherche, de 5 unités expérimentales, de 2 unités mixtes et d'une unité de service, mais

également de dispositifs scientifiques collectifs et des partenaires académiques (tel que l'Université d'Orléans).

2. Unité de Recherche AGPF

L'UR AGPF appartient au second pôle cité précédemment. Elle regroupe une trentaine de personnes possédant des compétences en génétique, en génomique et en physiologie appliquées à l'étude des arbres forestiers Les recherches menées au sein de cette unité visent à valoriser les ressources génétiques forestières en vue d'une production durable de bois d'œuvre et de biomasse, tout en prenant en compte l'impact écologique des populations domestiquées sur l'écosystème et un contexte climatique changeant. Les programmes d'amélioration génétique qui y sont conduits concernent 6 espèces forestières (3 résineux et 3 feuillus) : le douglas, le mélèze, le pin sylvestre, le peuplier, le frêne et le merisier. L'unité travaille dans de nombreux domaines :

- le développement de stratégies innovantes de sélection et de diffusion du progrès génétique,
- l'évaluation et la gestion de la diversité génétique,
- l'étude des interactions entre les variétés améliorées et les populations sauvages correspondantes.

3. SPEAL et SPEAL 2

Le projet régional de Sélection Participative d'Espèces Annuelles ou Ligneuse adaptées aux pratiques agro-écologiques (SPEAL) est un partenariat entre acteurs académiques, associatifs et professionnels en région Centre-Val de Loire. Le 1^{er} projet SPEAL a été mené de juillet 2013 à juin 2016. Le 2nd projet qui est actuellement en cours, SPEAL 2, a débuté en juillet 2016 et est prévu jusqu'en juin 2019. Il est financé par le Conseil Régional du Centre-Val de Loire. Les actions principales réalisées au sein de ce projet sont :

- La sélection et la gestion dynamique de variétés « populations » de blé, maïs et tournesol dans des fermes de la région Centre-Val de Loire,
- La promotion et le développement de l'agroforesterie en région Centre-Val de Loire,
- La sélection de variétés forestières adaptées à l'agroforesterie, et la mise en place d'expérimentations en collaboration avec les agriculteurs,
- La création puis le suivi de l'expérimentation système menée par l'UE PAO (Centre INRA de Nouzilly, Unité Expérimentale Physiologie Animale de l'Orfrasière): parcelles agroforestières implantées sur parcelles drainées, condition commune des parcelles agricoles de la région.

Au sein de ce projet, l'UR AGPF intervient comme coordinateur du projet, et pour toutes les actions concernant la sélection participative d'espèces forestières.

4. Stage

L'agroforesterie moderne intraparcellaire est un modèle d'agriculture auquel l'INRA s'intéresse depuis des années. Cette technique d'exploitation combine une culture et des arbres : arbres + élevages, arbres + grandes cultures,... Les arbres sont au final à faible densité : il est recommandé de viser environ 50 arbres par hectare pour ne pas entamer la production agricole

sous-jacente. La règlementation européenne pour obtenir des aides impose actuellement d'en planter entre 30 et 100 arbres par hectare. Dans ce système, les arbres sont assimilés à des arbres isolés. La difficulté est de réintroduire cette technique au sein des exploitations agricoles. Les agroforesteries ont eu un usage très répandu dans le passé, mais la mécanisation et les règlementations européennes ont amené une vaste disparition du couvert boisé des espaces agricoles, ainsi que des savoirs associés. Les freins rencontrés sont globalement dus au manque de connaissances quant au retour sur investissement possible, au temps de travail à rajouter pour l'entretien des arbres,... En effet, il faut attendre 30 à 40 ans pour pouvoir commencer à exploiter les arbres s'ils sont des feuillus précieux (espèces dont le bois a une grande valeur au mètre cube, exemples merisier, noyer, alisier, cormier...), or aucune plantation agroforestière expérimentale française n'a encore atteint ces âges. Pour tenter d'obtenir plus d'éléments sur les dépenses et les recettes induites par des parcelles agroforestières au cours du temps, le but est d'utiliser un logiciel de simulation qui a été développé par le CIRAD et l'INRA pour la gestion de fermes agroforestières, et qui a pour l'instant été utilisé pour étudier des situations en milieu tropical : Olympe. Ce logiciel pourrait avoir le potentiel de simuler une exploitation agricole en milieu tempéré et de répondre aux questionnements des agriculteurs concernant par exemple les impacts de la création successive de parcelles agroforestières. Il pourrait être également utilisé pour montrer l'impact de l'utilisation de variétés de meilleure qualité, ou simuler la production de bois d'un groupe de fermes d'un territoire rural,.... Un objectif prioritaire de l'unité est de démontrer l'intérêt économique de densifier un peu les plantations agroforestières (planter 100 arbres/ha au lieu de 50, pour pouvoir en éliminer un sur deux ensuite). J'ai donc ici porté une attention particulière à ce paramètre de variation. Olympe nécessite d'utiliser des paramètres et données qui n'ont pas encore été implémentées pour des situations agroforestières françaises. Ces données concernent à la fois des méthodes de travail et des croissances d'arbres (volumes de bois récoltables). Il me faudra donc combiner les informations recueillies auprès de professionnels rencontrés lors de visites de parcelles agroforestières et forestières et celles obtenues à partir de plantations forestières expérimentales. Ces dernières étaient aussi nécessaires pour réaliser les simulations de densifications (par couples d'arbres qui seraient écartés de 1 m, comme recommandé : Dupraz C & Liagre F., 2011) suivies d'éclaircies rapides (un arbre sur deux quand la hauteur moyenne de la plantation atteint environ 6 m), à comparer à l'absence de densifications et d'éclaircies, avec des projections à 30 et 40 ans.

Figure 1 : Visite de parcelle agroforestière, Ile-Bouchard (juin 2017)

Certains éléments ont été définis et fixés dès le départ comme la densité finale des parcelles agroforestières. Lors des simulations, il sera considéré que les densités finales sont de 50 arbres par

hectare. Cette valeur a été définie comme une densité optimale pour un boisement agroforestier réalisé avec des arbres feuillus précieux (au-dessus apparaît trop de concurrence entre les arbres et les cultures sous-jacentes, en-dessous la parcelle est sous-exploitée, Dupraz et Liagre, 2011).

Un second élément est la hauteur d'élagage. L'objectif premier était de viser un élagage minimal des arbres sur 5 m de hauteur pour obtenir 2 billes de bois, une de 3 m et une seconde de 2 m. Cet objectif a été revu à la hausse après une discussion avec un agriculteur ayant lui-même planté. Il a été conclu de cet échange que viser un élagage sur 6 m de haut n'est absolument pas insensé. Ce sont ces 6 m d'élagage qui sont devenu le nouvel objectif avec la récolte de 2 billes de 3 m chacune.

Enfin, les catégories de qualité de bois définies pour les cours des bois sur pied que le magasine Forêt de France publie tous les mois dépendent de 2 critères : le diamètre de la bille de bois et les défauts présents (courbure, nœud,...). Je n'ai considéré qu'un seul de ces critères : le diamètre de la bille. Ce choix à été fait car l'entretien et l'attention apporté aux arbres en agroforesterie doivent limiter les défauts rencontrés. Le manque de soins ou les accidents peuvent être traités par les « aléas » que permet d'implémenter Olympe. Les tarifs des catégories utilisés lors des simulations ont été inspirés des tarifs minimaux (par précaution) de plusieurs espèces de feuillus précieux présentés dans un exemplaire (mars 2016) de Forêt de France. Les tarifs réels d'une vente sont très variables, ils dépendent par exemple du lieu, du nombre de billes,.... Le classement des types de bois utilisé pour les calculs de volumes est le suivant :

Tableau 1 : Catégories de bois, prix minimal inspiré des prix minimaux pour le merisier, chataîgnier, frêne, érable (Rérat B., 2016)

Catégorie	Diamètre borne inférieure incluse	Diamètre borne supérieure exclue	Utilisation	Prix (€/m³)
Α	50 cm		Tranchage	260
В	45 cm	50 cm	Plot	100
С	35 cm	45 cm	Sciage	30
D		35 cm	Diverse : palette, BRF,	15

II. Dispositifs et préparation des fichiers

1. Plantations étudiées

Il n'est pas possible de travailler sur des données provenant de parcelles agroforestières expérimentales puisqu'elles sont trop récentes. En revanche, des données de plantations de merisiers sur parcelle agricole ou forestière mises en place pour faire de la comparaison de clones sont disponibles. Un clone, dans notre cas, est un ensemble d'individus issus de bouturage, donc génétiquement identiques. Ces plantations sont composées de parcelles unitaires de 1 à 4 individus provenant du même clone, disposées en blocs incomplets à composition aléatoire, et comportant des bordures avec, le plus souvent, les mêmes clones. Le nombre de clones est souvent élévé, plus de 20, et il y a parfois une ou deux unités génétiques comportant des arbres issus de semis, utilisées comme témoins. Pour chaque plantation expérimentale, un fichier répertorie entre autres, les arbres avec leur position au sein du site (coordonnées et numéro de bloc), leur numéro de clone, des informations quant à leur flexuosité ou leur rectitude, ainsi que des mesures de croissance

effectuées au fil des années concernant la circonférence et la hauteur. Les années des mesures peuvent différer selon les plantations et être plus ou moins régulières. La circonférence est mesurée à 1,30 m du sol et généralement à partir de la 5^{ème} année de la plantation. La mesure de la hauteur commence dès la plantation et n'est plus effectuée au-delà de la 10^{ème} année (les arbres sont ensuite trop hauts pour être mesurés à la perche télescopique, et la croissance en hauteur est moins informative que la croissance en circonférence après 10 ans).

Ci-dessous, un exemple de présentation des fichiers de données des plantations. Cette présentation peut varier d'un fichier à un autre en fonction des années de mesure, de la manière de l'indiquer (année de la mesure ou l'âge de la plantation au moment de la mesure), des éléments relevés,... Cependant, chacun de ces fichiers comporte une page décrivant les différentes colonnes.

Tableau 2 : Extrait du fichier original de la plantation Arc avec explication des colonnes

abscisse	ordonnée	n° de clone	n° de clone interne au dispositif	Type de multiplication végétative	n° de bloc	numéro de répétition	hauteur à la plantation (28/02/1985)	hauteur fin 1985	hauteur 1986	hauteur 1987	hauteur 1988	hauteur 1989	circonférence 1989	
XX	уу	fa	С	М	bl	r	h0	h1	h2	h3	h4	h5	c5	
1	13	165	8	2	21	6	149	158	190	249	329	431	159	
1	14	165	8	2	21	6	136	159	190	-5	-9	-9	-9	
1	15	165	8	2	21	6	96	128	163	223	238	295	75	

Pour les besoins de l'analyse, un recul d'environ 15 ans est nécessaire. En considérant cette contrainte de recul et l'importance d'avoir un assez grand nombre de plantations à traiter, je ne me suis pas restreinte aux plantations sur parcelle agricole qui sont plus proches du modèle agroforestier que les parcelles forestières, et ce, rien que par rapport au type de terrain utilisé. En effet, bien que les conditions forestières soient éloignées des conditions rencontrées en agroforesterie, le nombre de plantations en milieu forestier dont les mesures ont été faites jusqu'à environ 15 ans est non négligeable. La différence majeure entre le modèle forestier et agroforestier est la densité de plantation. Cet élément n'a dans un premier temps que peu d'influence sur le type de données que je vais utiliser, mais au cours du temps, une concurrence va apparaître entre les arbres forestiers (et aussi avec la végétation annexe qui repousse) ce qui ralentira leur croissance. Cette concurrence n'est pas présente en agroforesterie car la faible densité permet d'assimiler chaque arbre à un arbre isolé, en croissance libre. Une autre différence non négligeable entre les plantations polyclonales étudiées et des parcelles agroforestières, plantés de variétés le plus souvent non clonales, est la diversité génétique des arbres. Bien que le modèle des dispositifs avec parcelles unitaires monoarbre soit le plus proche du modèle agroforestier, la plus grande partie des plantations considérées comporte des parcelles unitaires de plusieurs plants génétiquement identiques. C'est une contrainte qu'il a fallu prendre en compte dans le code R.

Tableau 3 : Liste des plantations étudiées

Cito	Darcollo	Curface (ba)	Nombre de	Densité	Parcelle
Site	Parcelle	Surface (ha)	plants	plants (plants/ha)	
Arc	N.A.	N.A.	388	N.A.	3 plants
Bazeuge	N.A.	N.A.	401	N.A.	3 plants
Bergerac	Agricole	2.6	1 303	500	Mono-arbre
Bessines	Forêt	1.2	497	414	4 plants
Boulzicourt	Forêt	0.6	451	752	4 plants
Douzy	Agricole	2.1	1 045	498	3 plants
Harvincourt	Forêt	3.1	1 547	499	Mono-arbre
Lyons	Forêt	0.9	446	496	4 plants
Neufchâtel	Forêt	1.4	687	491	3 plants
Pange	Forêt	1	425	425	3 plants
Saint Martin	Agricole	2.5	1 244	500	Mono-arbre
Sainte Segrée	Agricole	1.1	558	507	3 plants
Sarrazac	Agricole	1.6	784	490	3 plants
Soulaures	Agricole	1.1	549	499	4 plants
Us	Forêt	1.8	732	417	Mono-arbre

2. Préparation des fichiers pour analyse

a. Sélection des données

A partir des fichiers de données des plantations, j'ai préparé les 15 fichiers à importer dans *R*. Le fichier doit se présenter sous la forme d'un fichier .csv. Il se compose des 10 colonnes dans l'ordre suivant :

- 1^{ère} colonne : cl : le numéro de clone,
- 2^{ème} colonne : bl : le numéro de bloc,
- 3^{ème} colonne : ind : le numéro d'individu,
- 4^{ème} colonne: xx: l'abscisse du plant sur le site,
- 5^{ème} colonne : yy : l'ordonnée du plant sur le site,
- 6^{ème} colonne : c4/c5/c6/c7/c8 ou c10 : une première mesure de circonférence utilisée pour faire la sélection entre deux plants d'un même couple ainsi que pour la projection de la circonférence à 30 et 40 ans,
- 7^{ème} colonne : h3/h4/h5/h6 ou h7 : une première mesure de la hauteur utilisée pour la détermination du taux d'élagage,
- 8^{ème} colonne : c9/c10 ou c11 : une seconde mesure de circonférence utilisée pour faire une représentation graphique de la parcelle
- 9^{ème} colonne : h9/h10 ou h11 : une seconde mesure de la hauteur utilisée pour faire une représentation graphique de la parcelle ainsi que pour la détermination du taux d'élagage
- 10^{ème} colonne : c13/c14/c15/c16/c17 ou c20 : une troisième mesure de la circonférence utilisée pour la projection de la circonférence à 30 et 40 ans.

Toutes les colonnes à l'exception de la 3^{ème} (numéro d'individu) sont récupérées des fichiers de données originaux. Cette 3^{ème} colonne est un identifiant unique pour chaque plant. Elle peut rester vide dans un premier temps. Ce numéro ira de 1 jusqu'au nombre de positions totales de la plantation. Ce nombre de positions est égal au nombre de points de plantation de la zone

rectangulaire qui sera créée pour accueillir la plantation. La création de cette zone rectangulaire sera détaillée par la suite.

La colonne 6 correspond à la mesure de circonférence lors de l'année d'éclaircie en cas de densification. Quand les arbres en couple sont écartés de un mètre, l'éclaircie peut avoir lieu quand les arbres ont environ 6 mètres de haut. L'âge correspondant dépend du potentiel du site ainsi que des facteurs d'entretien de la plantation. Cette éclaircie pourrait avoir généralement lieu vers la 7ème année après plantation. Dans une parcelle agroforestière densifiée mais avec un écart entre arbres régulier au lieu de la densification recommandée par couples (un arbre tous les 4 mètres, plutôt qu'un couple tous les 8 mètres par exemple), il serait possible de la retarder pour garder un joker pendant plus longtemps. Les plantations de merisiers, plantés le plus souvent à 4 mètres sur 5 mètres, n'entrent pas en concurrence, donc ne sont pas à éclaircier, avant une quinzaine d'années. Mais attendre plus longtemps impliquerait des soins supplémentaires à prodiguer et un risque d'attachement (empêchant la coupe des moins bons). Ici, on garde cet objectif des 7 ans en s'adaptant à la fois aux données disponibles et au potentiel de la plantation en question (vitesse de croissance des arbres). La décision s'est faite au cas par cas. Voici quelques exemples :

- La première mesure de circonférence a lieu à 10 ans. On garde celle-ci.
- Les mesures à 5 ans et à 7 ans sont disponibles. Le choix se fait en fonction de la hauteur atteinte. Si les 5 m sont atteints par une grande partie des arbres, alors la sélection peut avoir lieu. Le même raisonnement se fait si l'on a le choix entre 7 et 8 ans ou entre 5 et 8 ans.
- Les mesures à 5 ans (ou 7 ans) et 10 ans sont disponibles. On effectue la sélection à 5 ans (ou 7 ans).

La colonne 7 correspond à une mesure de hauteur. Cette mesure, associée à la mesure de la colonne 9, permet une projection de la hauteur que j'utilise pour déterminer des taux d'élagage. Il faut donc que ces 2 mesures ne correspondent pas à la même année. Dans la majorité des cas, on choisit la mesure de hauteur effectuée la même année que la mesure de circonférence de la colonne 6. Attention, il existe tout de même quelques cas particuliers :

- Les mesures colonne 6 et 9 ont été faites lors de la 10^{ème} année. On décide de prendre une mesure effectuée plus tôt. Le manque de données oblige à sélectionner les mesures obtenues lors de la 3^{ème} année.
- Les mesures colonnes 6 datent de la 8^{ème} année alors que celles de la colonne 9 ont été prises au cours de la 10^{ème} année. L'écart de seulement 2 ans entre ces mesures n'est pas favorable pour les projections. La décision a été prise de prendre les mesures effectuées durant la 5^{ème} année.

Les colonnes 8 et 9 devaient avoir leurs mesures effectuées la même année. Un couple de mesure de circonférence et de hauteur est nécessaire pour une future représentation graphique. Le choix s'est porté sur la $10^{\text{ème}}$ année de plantation car cette mesure est faite pour la plus grande partie des plantations, ce qui permet une comparaison de l'ensemble des plantations. Dans 2 cas, les mesures n'ont pas été faites la $10^{\text{ème}}$ année mais la $9^{\text{ème}}$ ou la $11^{\text{ème}}$. Ce sont donc ces autres années de mesure que j'ai utilisées.

La colonne 10 comporte généralement la mesure de circonférence la plus récente. Mais là encore, il y a des exceptions :

- Les mesures à 14 et 17 ans sont disponibles. On observe qu'entre 14 et 17 ans, la vitesse de croissance ralentit. Cela indique que les arbres sont en condition de concurrence. On sélectionne alors les mesures de circonférences à 14 ans. Dans le cas contraire, on garde les mesures à 17 ans.
- Les mesures à 13 et 15 ans sont disponibles. Or, avant 15 ans il y a déjà eu une éclaircie (indiquée par la valeur symbolique -71 à la place des mesures) et un nombre important d'arbres a été coupé. On utilise donc les mesures à 13 ans.

b. Ajustement des données

Certaines mesures de circonférence ou de hauteur sont parfois remplacées par les valeurs symboliques -5 ou -9. Ces chiffres négatifs ont chacun leur signification. En effet, -5 signifie « non mesurable », par exemple si la circonférence est trop faible (elle n'a donc pas pu été mesurée) alors que -9 indique que le pied est mort. Il est également possible de rencontrer des commentaires indiquant qu'il y a eu regarni. Dans chacun de ces cas, il faut adapter le fichier de la manière suivante :

- Si la hauteur est -5, l'information n'est pas connue mais l'arbre pourra fournir des billes de bois. On remplace -5 par NA.
- Si la hauteur est -9, l'arbre est mort et aucune bille de bois ne pourra être récoltée.
 On remplace -9 par NA. Bien que logiquement, on puisse remplacer cette valeur par 0, cela n'a pas été fait en raison du code.
- Si la circonférence est -9, l'arbre est mort et aucune bille de bois ne pourra être récoltée. On remplace -9 par 0.
- Si la circonférence est -5 jusqu'à la dernière circonférence mesurée, l'arbre n'est que peu valorisable. On le considère comme étant mort. On remplace -5 par 0.
- Si la circonférence est -5 puis est de nouveau mesurable, l'arbre est considéré comme viable. On remplace -5 par une valeur interpollée, déduite d'après son voisinage et son appartenance clonale.
- Si un commentaire indique un regarni, l'arbre initial est mort (on aurait -9 pour toutes les mesures). Les circonférences sont mises à 0 et les hauteurs sont remplacées par NA.

Il peut également arriver que le numéro de clone soit un diminutif d'un nom ou une indication de sa provenance (témoin issu de semis). Dans ce cas, il faut le changer en numéro, pour la commodité de traitement par la suite. Par exemple, le « numéro » du génotype 001n indiquant une provenance 1 neutrophile est tout simplement remplacé par 1. Le numéro de remplacement est quelconque. La seul règle est qu'il doit être différent des numéros de clones existants. Cependant, le changement doit être consigné dans la page de commentaire du fichier excel, tout comme les règles de transformation des -5 et des -9. Par ailleurs, bien que ces génotypes (un ou deux par plantation expérimentale) soient différents en nature des clones, puisqu'ils sont génétiquement variables, ils seront traités de même façon qu'eux dans le code, pour simplifier le processus.

3. Création du dataframe à analyser

Le nombre de plantations à traiter est important (15) et l'objectif est de pouvoir continuer à utiliser le code *R* sur d'autres plantations de merisiers ou d'autres espèces forestières en limitant au

maximum les modifications à apporter au code. Ce code *R* pourra être ré-utilisé dans l'unité, et sera mis à disposition d'autres chercheurs de l'INRA ou d'autres instituts. Il faut donc que le code mis en place :

- ne demande qu'un travail préparatoire des fichiers simple et rapide,
- soit capable de s'adapter aux différentes plantations qui sont toutes de géométrie différente,
- ne nécessite que des modifications mineures (dans l'idéal, les noms des fichiers à importer ou à exporter).

C'est dans l'optique de limiter le travail préparatoire que le fichier à préparer ne comporte que peu de colonnes et que seules des adaptations de données sont demandées. Les premières lignes du code permettent à partir de ces données de créer un nouveau dataframe avec plus d'informations. L'analyse se ferra uniquement sur ce nouveau dataframe. Cette création se fait par étape pour permettre des vérifications intermédiaires du code :

<u>Etape 1</u>: importation du fichier simplifié enregistré sous le format .csv grâce à la commande read.csv2(), en indiquant la présence des titres des colonnes sur la première ligne, le type de séparation entre les valeurs et celui pour les décimales.

```
D0 <- read.csv2 ('arc pret 1.csv', header = TRUE, sep = ';', dec =',')
```

<u>Etape 2</u>: renseignement de quelques informations spécifiques à la plantation.

En utilisant la commande str(), on affiche la structure de notre dataframe, les noms des colonnes ainsi que la façon dont R considère les variables. Les noms des colonnes permettent d'adapter le code à la plantation étudiée en renseignant les valeurs réelles de h.min, h.max, c.min, c.max, qui seront utilisées pour les calculs de temps d'élagage (h.min et h.max) et pour ceux des volumes (c.min et c.max). On peut s'apercevoir que toutes les variables sont pour le moment considérées comme étant quantitatives (et sous le format de nombre entier).

```
str(D0)
      >str(D0)
                       388 obs. of 10 variables:
      'data.frame':
       $ cl :int 165 109 153 131 234 160 203 106 106 225 ...
       $ bl :int 21 21 21 1 21 21 21 21 21 21 ...
       $ ind: int 1 2 3 4 5 6 7 8 9 10 ...
       $ xx :int 1 1 1 1 2 2 2 2 2 2
                 13 14 15 16 18 17 16 15 14 13 .
       $ yy :int
                 284 0 141 240 196 177 129 258 235 234 ...
        c7 :int
       $ h7 :int 557 NA 432 584 493 532 543 643 546 565 ...
       $ c10: int 440 0 264 381 315 278 249 473 424 404 ...
       $ h10: int 822 NA 616 826 697 725 707 886 790 793 ...
       $ c15: int 851 0 577 702 553 528 470 791 726 646 ...
```

```
nb.arbres<-50 # nombre d'arbres pour la sortie (usuellement 50 plants)
h.min<-7 # année de la première mesure de hauteur = colonne 7
h.max<-10 # année de la seconde mesure de hauteur = colonne 9
c.min<-7 # année de la première mesure de circonférence = colonne 6
c.max<-15 # année de la dernière mesure de circonférence = colonne 10
```

<u>Etape 3</u>: création d'un dataframe *D* composé de 18 colonnes représentant une zone rectangulaire contenant la plantation réelle.

```
Plantation.Rect.Donnees<-function()
  # Obtenir un Data.frame avec les individus manquants
  # OUTPUT :
  # D : data.frame avec les données des individus (les 10 premières
colonnes remplies)
  # Nombre totale de position si la plantation est rectangulaire
  N = (max (D0\$xx) + 2) * (max (D0\$yy) + 2)
  # Création du data.frame "d'accueil"
  D \leftarrow matrix (c (rep (NA, N), rep (NA, N), (1:N), rep (NA, N), (rep (0: (max (D0$yy)+1),
       (\max(D0\$xx)+2))), rep (NA,N), rep (NA,N), rep (NA,N), rep (NA,N),
       \mathtt{rep} (NA,N), \mathtt{rep} (NA,N), \mathtt{rep} (NA,N), \mathtt{rep} (NA,N), \mathtt{rep} (NA,N), \mathtt{rep} (\mathtt{0},N),
       rep(0,N), rep(0,N), rep(0,N)), byrow = F, nrow=N, ncol=18)
  # Noms des colonnes
  colnames(D) <-c(names(D0), 'est.1.5.c30', 'est.1.5.c40', 'est.4.5.c30',</pre>
       'est.4.5.c40', 'volume.cat.A', 'volume.cat.B',
       'volume.cat.C','volume.cat.D')
  D<-as.data.frame(D)
  # Calcul de la coordonnée xx de chaque individu pour avoir le numéro
d'individu qui fait un balayage vertical commençant par le bas
  for (x in 0: (max(D0$xx)+1))
    D[D$ind==(x*(max(D0$yy)+2)+1):((x+1)*(max(D0$yy)+2)),4]<-x
  }
  # Report des données connues dans le data.frame (sauf du numéro
d'individu, colonne 3)
  # Extraction des coordonnées des arbres existants
  XY < -D0[, c(4, 5)]
  for (i in 1:nrow(XY))
    # Report des données dans le nouveau dataframe
    D[D$xx==XY[i,1] & D$yy==XY[i,2],c(1,2,4:10)]<-
      D0[D0$xx==XY[i,1] & D0$yy==XY[i,2],c(1,2,4:10)]
  }
  return (D)
}
D<-Plantation.Rect.Donnees()
```

Ce dataframe comporte plus de lignes que *D0*. En effet, pour faciliter le traitement des données, l'étude se fait uniquement sur des parcelles rectangulaires, auxquelles on rajoute une bordure (pour les besoins du code). Or aucune plantation n'est rectangulaire. Des points « de plantation » sont alors créés sans arbre présent. Ces positions où aucun arbre n'a été planté ne possèdent qu'un numéro d'individu, des coordonnées *xx* et *yy* et des volumes de bois mis à 0. Pour représenter l'absence d'arbre (et empêcher la prise en compte d'un arbre qui n'existe pas), les autres variables sont toutes égales à *NA*. Pour les points de plantation censés avoir un arbre, les données sont transférées de *D0* à *D* en utilisant les coordonnées *xx* et *yy*.

Les 10 premières colonnes de ce nouveau dataframe sont identiques aux 10 colonnes décrites précédemment concernant leur type de contenu. Les 8 dernières sont les suivantes :

11^{ème} colonne : est.1.5.c30 : une estimation de la circonférence à 1,5 m du sol à 30 ans pour le calcul du volume de la 1^{ère} bille en cas de coupe à 30 ans.

- 12^{ème} colonne : est.1.5.c40 : une estimation de la circonférence à 1,5 m du sol à 40 ans pour le calcul du volume de la 1^{ère} bille en cas de coupe à 40 ans.
- 13^{ème} colonne: est.4.5.c30: une estimation de la circonférence à 4,5 m du sol à 30 ans pour le calcul du volume de la 2^{nde} bille en cas de coupe à 30 ans.
- 14^{ème} colonne: est.4.5.c40: une estimation de la circonférence à 4,5 m du sol à 40 ans pour le calcul du volume de la 2^{nde} bille en cas de coupe à 40 ans.
- 15^{ème} colonne : volume.cat.A : le calcul de ce que chaque arbre fournit en bois de catégorie A en m³.
- 16^{ème} colonne : volume.cat.B : le calcul de ce que chaque arbre fournit en bois de catégorie B en m³.
- 17^{ème} colonne : volume.cat.C : le calcul de ce que chaque arbre fournit en bois de catégorie C en m³.
- 18^{ème} colonne : volume.cat.D : le calcul de ce que chaque arbre fournit en bois de catégorie D en m³.

Bien que les colonnes 11 et 13 (estimation de la circonférence à 30 ans) soient non utilisées à ce jour dans le code, elles ont été créées pour permettre de modéliser une situation non prise en compte ici, afin de simplifier les analyses en raison du temps imparti par le stage. En effet, si à 30 ans, un nombre d'arbres suffisamment important a atteint un diamètre supérieur à 50 cm, alors il peut y avoir une première coupe. C'est un élément qui pourrait être intéressant de développer.

Etape 4: estimation des circonférences à 30 et 40 ans, à 1,5 et 4,5 m du sol.

Le volume des billes de bois se calcule à partir de la circonférence de la bille à mi-hauteur. Dans notre cas, on vise 2 billes par arbre mesurant toutes les deux 3 m de haut. On souhaite donc connaître les circonférences à 1,5 et 4,5 m du sol (car le volume des billes de bois se calcule à partir de la circonférence à mi-hauteur). On considère que la croissance de la circonférence est linéaire jusqu'à 40 ans (arbres agroforestiers en croissance libre sans concurrence). On utilise les 2 années où la circonférence est connue pour obtenir une équation de la circonférence en fonction de l'année :

On sait que :
$$c7 = a \times 7 + b$$
 et $c15 = a \times 15 + b$

Donc:
$$a = \frac{c15 - c7}{15 - 7}$$
 et $b = c7 - \frac{c15 - c7}{15 - 7} \times 7$

On a l'équation :
$$circonférence(année\ x) = \frac{c15-c7}{15-7}\ x + c7 - \frac{c15-c7}{15-7} \times 7$$

On a donc connaissance de la circonférence à 30 et 40 ans à 1,3 m du sol puisque les mesures de circonférence sont effectuées à 1,3 m du sol. Pour estimer la circonférence à 1,5 m et 4,5 m du sol, on utilise le coefficient de défilement ou de décroissance métrique. Il s'agit du nombre de cm moyen dont la circonférence diminue par mètre de hauteur. Il diffère selon l'espèce et la taille de l'arbre. Des tables de coefficient de défilement ont été établies pour un grand nombre d'espèces, dont le merisier (In K., Rondeux J & Thill A., 1972). Ces valeurs correspondent à des conditions forestières qui sont différentes des conditions agroforestières. Cependant, n'ayant pas d'autres éléments, je me base sur ces coefficients pour choisir une seule valeur de décroissance métrique qui sera appliquée à tous les arbres. La valeur choisie (une valeur moyenne) est une perte pour la circonférence de 5 cm par m, ce qui correspond pour le diamètre à une perte de 1,6 cm par m. Si on

décide plus tard de changer cette valeur, il suffira de la modifier dans le code : soit directement dans la fonction, soit à chaque appel de cette dernière :

```
Est.Circ<-function(D,c.min,c.max,coef.dec.met=5)</pre>
  # Remplissage des colonnes 11 à 14
  # INPUT :
  # D : le data.frame de la plantation rectangulaire
  # c.min : année de la mesure de circonférence de la colonne 6 (hauteur de
la mesure : 1,30m)
  # c.max : année de la mesure de circonférence de la colonne 10 (hauteur
de la mesure : 1,30m)
 # coef.dec.met : coefficient de défilement ou décroissance métrique (en
cm par m)
 # OUTPUT :
  # D : data.frame avec les informations individus + les estimations à 30
et 40 ans
  # Remarque : les circonférences sont en mm
  c1.3.30<-c() # accueillera les circonférences à 30 ans pour une hauteur
de mesure de 1,30m
  c1.3.40<-c() # accueillera les circonférences à 40 ans pour une hauteur
de mesure de 1,30m
  for (x in 0:max(D$xx))
    for (y in 0:max(D$yy))
      if (is.finite(D[D$xx==x & D$yy==y,10])==T & ((D[D$xx==x &
D$yy==y,10])>0) #
        # Calcul coefficient projection linéaire
        # Coefficient directeur de la droite
        c.dir<-(D[D$xx==x & D$yy==y, 10]-D[D$xx==x & D$yy==y, 6])/(c.max-
c.min)
        # Ordonnée à l'origine
        o.orig<-D[D$xx==x & D$yy==y,10]-c.dir*c.max
        # Calcul des projections de la circonférence à 1,3m à 30 et 40 ans
        c1.3.30<-round(c.dir*30+o.orig, digits=2)
        c1.3.40 \leftarrow round(c.dir*40+o.orig,digits=2)
        # Estimation de la circonférence à 1,5m à 30 et 40 ans avec le
défilement
        D[D$xx==x & D$yy==y,11] < round((c1.3.30-0.2*coef.dec.met*10),
digits=2)
        D[D$xx==x & D$yy==y, 12] < round((c1.3.40-0.2*coef.dec.met*10),
digits=2)
        # Estimation de la circonférence à 4,5m à 30 et 40 ans (attention à
ne pas obtenir des circonférences inférieures à 0)
        if (((D[D$xx==x & D$yy==y,11]) > (3*coef.dec.met*10)) & ((D[D$xx==x
& D$yy==y,12]) > (3*coef.dec.met*10)) )
        {
          D[D$xx==x & D$yy==y,13]<-round(D[D$xx==x & D$yy==y,11]-
3*coef.dec.met*10,digits=2)
         D[D$xx==x & D$yy==y,14]<-round(D[D$xx==x & D$yy==y,12]-
3*coef.dec.met*10,digits=2)
        }
      }
    }
```

```
return(D)
}

D<-Est.Circ(D,c.min,c.max,coef.dec.met=5)</pre>
```

Etape 5 : calcul du volume de bois par catégorie que fournit chaque arbre à 40 ans.

Pour rendre plus naturelle la lecture des hauteurs, on commence par les convertir en mètre, alors qu'elles sont exprimées pour le moment en centimètre.

```
# Convertir les hauteurs en mètre
D[,7]<-D[,7]*0.01 # hauteur colonne 7 en m
D[,9]<-D[,9]*0.01 # hauteur colonne 9 en m</pre>
```

Il s'agit ensuite de remplir les colonnes 15 à 18 par des volumes de bois exprimés en m3.

```
# Calcul des volumes de bois par catégorie
# Remplissage des colonnes 15, 16, 17 et 18
D<-Vol.Bois.Cat()</pre>
```

Pour cela, j'utilise les circonférences à 40 ans (à 1,5 et 4,5 m du sol): est.1.5.c40 et est.4.5.c40. Avec les circonférences exprimées en mm et h=3 m (la hauteur des billes), on a les expressions des volumes suivantes :

$$Volume.\,bille.\,1 = h \times S1 = h \times \pi \times r^2 = h \times \pi \times \left(\frac{est.\,1.5.\,c40/1000}{2\pi}\right)^2 = h \times \frac{\left(est.\,1.5.\,c40/1000\right)^2}{4\pi}$$

$$Volume.\,bille.\,2 = h \times S2 = h \times \pi \times r^2 = h \times \pi \times \left(\frac{est.\,4.5.\,c40/1000}{2\pi}\right)^2 = h \times \frac{\left(est.\,4.5.\,c40/1000\right)^2}{4\pi}$$

En fonction des valeurs des circonférences, les volumes calculés n'iront pas remplir les mêmes colonnes (tableau 1).

A présent, si l'on affiche la structure de ce nouveau dataframe grâce à la commande str(), on a bien les 8 colonnes supplémentaires. Les données affichées (qui sont les premières lignes du dataframe) sont principalement des NA et des 0 car il s'agit des éléments de la colonne xx=0 qui est une bordure créée qui ne comporte que des points « de plantation » sans arbre.

```
# Représentation visuelle du fichier créé
str(D)
```

```
>str(D)
'data.frame':
               819 obs. of 18 variables:
$ c1
              : num
                    NANANANANANANANA ...
$ b1
                    NANANANANANANANA ...
             : num
$ ind
                    1 2 3 4 5 6 7 8 9 10 ...
             : num
                    0 0 0 0 0 0 0 0 0 0 ...
$ xx
             : num
                    0 1 2 3 4 5 6 7 8 9 ...
$ yy
             : num
$ c7
             : num
                    NANANANANANANANA ...
$ h7
                    NANANANANANANANA ...
             : num
$ c10
                    NANANANANANANANA ...
             : num
$ h10
                    NANANANANANANANA ...
             : num
$ c15
                    NANANANANANANANA ...
              : num
$ est.1.5.c30 : num
                    NANANANANANANANA ...
$ est.1.5.c40 : num
                    NANANANANANANANA ...
$ est.4.5.c30 : num
                    NANANANANANANA ...
```

```
$ est.4.5.c40 : num    NANANANANANANANANA ...
$ volume.cat.A: num    0 0 0 0 0 0 0 0 ...
$ volume.cat.B: num    0 0 0 0 0 0 0 0 ...
$ volume.cat.C: num    0 0 0 0 0 0 0 ...
$ volume.cat.D: num    0 0 0 0 0 0 0 ...
```

Pour définir correctement ce dataframe, on peut réadapter le type de nos variables que *R* considère comme étant toutes quantitatives. Comment déterminer le type de nos variables ?

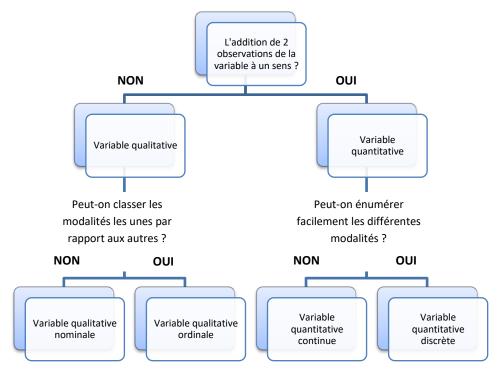


Figure 2: Types de variables

En appliquant ce raisonnement, on obtient dans notre cas 2 types de variables différentes :

- Variables qualitatives nominales : n° de clone, n° de bloc, n° d'individu, coordonnée xx et coordonnée yy.
- Variables quantitatives continues : les circonférences, les hauteurs et les volumes.

On utilise la commande as.factor() pour transformer les 5 premières variables en variables qualitatives. Ainsi, aucun calcul (moyenne,...) ne sera effectué à partir de celles-ci.

```
D$cl <- as.factor(D$cl)
D$bl <- as.factor(D$bl)
D$ind <- as.factor(D$ind)
D$xx <- as.factor(D$xx)
D$yy <- as.factor(D$yy)</pre>
```

III. Analyse

Seul le déroulement du code pour la parcelle Arc sera commenté, mais le fait qu'il soit généralisé un maximum permet d'appliquer le même raisonnement aux autres parcelles.

1. Aperçu de la plantation

Une fois le dataframe D créé, la première commande effectuée est une représentation de la parcelle en question. Cette représentation permet d'apercevoir à la fois le diamètre des arbres (à partir de la circonférence) et leur hauteur. J'utilise pour cela les colonnes 8 et 9 qui ont leurs données mesurées la même année. Dans un premier temps, je rajoute momentanément un arbre aux coordonnées (xx=0,yy=0) dont la hauteur est de 14,5 m et la circonférence d'environ 660 cm (21 cm de diamètre). Ces valeurs correspondent aux maxima rencontrés sur l'ensemble des parcelles. Puis, je créée un sous-dataframe correspondant aux lignes dont la circonférence de la colonne 8 existe (existence du plant). Je traduis les circonférences exprimées en mm en diamètres exprimés en cm. Enfin, toutes les positions où un arbre a été planté mais dont la hauteur est indiquée comme étant NA, ont leur 9^{ème} colonne mise à 0. Ces valeurs associées aux maxima permettent d'obtenir une échelle commune à toutes les parcelles facilitant ainsi la comparaison visuelle entre elles (annexe 16). Une fois la représentation graphique réalisée, l'arbre ajouté est effacé.

```
D[1,9]<-14.5
D[1,8]<-21*pi*10
D1 <- subset(D,D[,8] >= 0)
D1$c10<-round((D1$c10)/(pi*10),digits=1)
names(D1)[match("c10",names(D1))] <-'d10'
D1[c(which(is.finite(D1$h10)==F)),9]<-0
print(ggplot(D1,aes(x=xx,y=yy,color=h10,size=d10)) + geom_point() +
scale_color_gradientn(colours=rainbow(6)))
D[1,9]<-NA
D[1,8]<-NA</pre>
```

On obtient la représentation suivante avec la grosseur du point qui représente le diamètre et la couleur qui indique la hauteur de l'arbre. L'individu en bas à gauche aux coordonnées (xx=0,yy=0) est l'individu fictif rajouté pour créer l'échelle. Il apparaîtra sur toutes les parcelles.

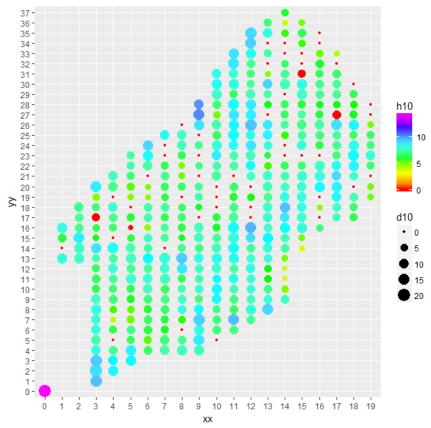


Figure 3 : Représentation de la parcelle Arc, selon la hauteur et le diamètre à 10 ans

On utilise ensuite la fonction ind.in.Cat() qui renvoit une matrice de 5 colonnes, 2 lignes. Elle permet d'avoir un second aperçu de la parcelle par rapport à son potentiel en l'appliquant à D. La première ligne correspond au nombre d'individus contribuant à chaque catégorie de bois et le total (nombre d'individus contribuant à au moins une catégorie) si la coupe a lieu à 40 ans. La seconde correspond au pourcentage que cela représente par rapport au nombre total d'arbres sur la parcelle.

Un dernier élément que l'on peut utiliser pour appréhender la parcelle est la durée d'élagage. En effet, plus la croissance est rapide, plus l'élagage de la parcelle sera fini tôt et donc moins cela coûtera cher (en temps ou en argent). On cible une récolte de 2 billes de bois de 3 m de hauteur chacune, ce qui signifie un élagage sur 6 m. Or, on considère à dire d'expert (Frédérique Santi) que la partie élaguée doit correspondre à environ 60% de la hauteur totale de l'arbre donc on vise une hauteur totale de 10 m. Il s'agit donc ici bien sûr d'un élagage potentiel, et non d'un élagage réel (les hauteurs élaguées par les propriétaires/gestionnaires n'ont jamais été mesurées dans ces plantations expérimentales). Cette hauteur n'est recherchée que pour les arbres qui peuvent fournir du bois appartenant aux catégories A, B ou C (diamètre supérieur à 35 cm à 40 ans). Les autres ne devraient pas être élagués, ou du moins pas aussi haut (seulement pour ne pas gêner le passage). J'appellerai par la suite ces individus de la façon suivante : individus avec potentiel.

Pour obtenir des informations sur l'élagage, j'ai créé une fonction stop.elagage() qui permet de choisir le critère d'arrêt : l'année de fin ou le taux d'élagage. Il est possible d'utiliser les 2

critères en même temps. Dans ce cas, le premier critère d'arrêt atteint arrêtera la fonction. On peut donc obtenir :

- Le taux d'élagage en fonction de l'année demandée, ou
- L'année où l'on pourrait arrêter l'élagage en fonction du taux d'élagage visé.

Tout comme pour la croissance en circonférence, on considère que la hauteur croît de façon linéaire. J'utilise les valeurs des colonnes 7 et 9 (des hauteurs) pour réaliser la projection linéaire de la hauteur de chaque arbre. Lors de l'utilisation de cette fonction, il peut être nécessaire de réajuster la valeur de y.lim. En effet, l'axe des ordonnées de l'histogramme correspond à un nombre d'arbres. En fonction des parcelles étudiées, cette valeur peut être inadaptée.

```
stop.elagage<-function(z,h.min,h.max,lim.an=40,lim.pourc=0.70,hauteur=10,
x.lim=30, y.lim=90)
  # Si non adapté : calcul du nombre d'année pour avoir 70% des arbres
élagués à 6m (donc d'une hauteur de 10m) car l'année limite 40 ne sera pas
atteinte.
  # INPUT :
  # z : data.frame du style de D (18 colonnes,...)
  # h.min : année de la première mesure de hauteur (colonne 7)
  # h.man : année de la deuxième mesure de hauteur (colonne 9)
  # lim.an : nombre d'années maximales d'élagage (critère d'arrêt 1)
  # lim.pourc : pourcentage d'élagage désiré (critère d'arrêt 2)
  \# hauteur : hauteur totale voulue (10m->6m d'élagué / 8.5m->5m d'élagué)
  # x.lim : forcer la valeur max de l'axe des abscisses (x)
  # y.lim : forcer la valeur max de l'axe des ordonnées (y)
  # OUTPUT :
  # un histogramme et une phrase traduisant le résultat
  c.dir<-c() # coefficients directeurs pour les équations de la hauteur</pre>
  o.orig<-c() # ordonnées à l'origine pour les équations de la hauteur
  num.ind<-c() # numéro des individus sélectionnés
  n<-0 # le nombre d'individus dont on peut projeter la hauteur et qui sont
"intéressants" à élaguer (diamètre final>=35cm)
  for (i in 1:nrow(z)) # on passe toutes les positions en revu
    # Sélection des individus avec potentiels
    if (is.finite(z[i,7]) & is.finite(z[i,12]) & z[i,12] >= 1100) # si
hauteur existante et si l'arbre atteindra potentiellement un diamètre de 35
    {
      n < -n+1
      # Mémorisation du numéro de l'individu à potentiel
      num.ind<-c(num.ind,z[i,3])
      # Détermination équation droite projection linéaire
      # Coefficient directeur de la droite
      c.dir < -round(c(c.dir,(z[i,9]-z[i,7])/(h.max-h.min)),digits=3)
      # Ordonnée à l'origine
      o.orig<-round(c(o.orig,z[i,9]-c.dir[n]*h.max),digits=3)</pre>
    }
  }
  if (length(num.ind)>0) # s'il y a au moins un individu avec potentiel
  {
      # Préparation d'un dataframe qui comportera tous les individus avec
potentiel
    info.ind<-matrix (NA, nrow=n, ncol=18, byrow=TRUE)
    colnames(info.ind)<-names(z)</pre>
```

```
info.ind<-as.data.frame(info.ind)
    # Sélection des données des individus avec potentiel
    for (i in 1:n)
      info.ind[i,]<-subset(z,z$ind==num.ind[i])</pre>
    # Initialisation
    i<-0
    pourc.elag<-0</pre>
    # Calcul du pourcentage d'élagage selon l'année
    while (pourc.elag<lim.pourc & i<lim.an)</pre>
      i<-i+1 # année
      H<-c.dir*i+o.orig # calcul de la hauteur pour l'année i pour
l'ensemble des arbres avec potentiel
      pourc.elag<-round(length(which(H>hauteur))/n,digits=2)
    # Histogramme de distribution en hauteur à i ans
    hist(H, freq=T, breaks=seq(0, x.lim, by=0.5), ylim=c(0, y.lim),
      main = paste("Histogramme de la hauteur totale à ",i,"ans"),
      sub=paste(pourc.elag*100,"% des arbres ayant du potentiel sont
      élaqués sur", 0.6*hauteur, "m"), xlab="Hauteur totale", ylab="Nombre
      d'arbres")
    abline(v=hauteur,col="red",lwd=2,lty=2) # indication hauteur ciblée
    rug(jitter(H)) # Affiche les valeurs des attributs
    legend(x=20, y=30, legend=c("Objectif"), col=c("red"), lty=c(2,1,1),
      lwd=c(2,3,2), cex=1, box.lty=0)
    return(paste("Au bout de",i,"ans,",pourc.elag*100,"% des arbres avec
      potentiel sont élagués sur", 0.6*hauteur, "m, soit",
      floor(n*pourc.elag), 'arbres sur', n, "(total parcelle=", nrow(D0),
      'arbres)'))
  }
  else # aucun individu avec potentiel n'a été trouvé
    return("il n'y a aucun arbre avec potentiel")
  }
}
```

Pour avoir une année de référence entre les parcelles, on effectue dans un premier temps le calcul du taux d'élagage à 10 ans. Ce taux est faible dans tous les cas mais grâce à la représentation de l'histogramme, on peut différencier les parcelles en s'intéressant à la localisation du pic. Dans le cas de la parcelle Arc, on se situe dans un cas de croissance moyenne : le pic n'est pas juste à la frontière des 10 mètres mais il reste proche.

```
stop.elagage(D,h.min,h.max,lim.an=10,lim.pourc=0.70)
>stop.elagage(D,h.min,h.max,lim.an=10,lim.pourc=0.70)
[1] "Au bout de 10 ans, 1 % des arbres avec potentiel sont élagués sur 6 m, soit 2 arbres sur 299 (total parcelle= 388 arbres)"
```

Histogramme de la hauteur totale à 10 ans

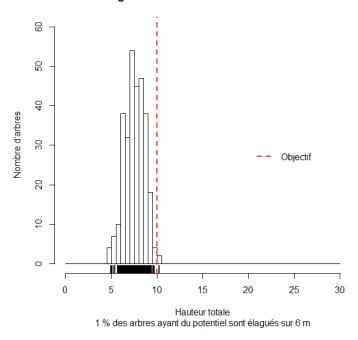


Figure 4 : Histogramme de la hauteur totale à 10 ans (en m), plantation Arc

Puis on utilise la fonction pour atteindre l'objectif des 70% (ou 80%), c'est-à-dire que l'on veut connaître l'année théorique où l'on aura 70% (ou 80%) des arbres avec potentiel élagués. Toutefois, on se pose une seconde condition qui est : après 20 ans, il n'y a plus d'élagage. Cette limite est due au faite que dans la réalité, pour une espèce possédant une croissance rapide telle que le merisier, l'élagage n'ira pas au-delà.

Dans le cas de la parcelle Arc, l'année où l'on atteint les 70% est également celle où l'on atteint les 80%. L'objectif des 70% est celui que l'on peut avoir quelle que soit la parcelle. Dans le cas de parcelles où la croissance est moyenne à rapide, viser 80% reste raisonnable. C'est pour cette raison que les 2 calculs sont effectués.

```
stop.elagage(D,h.min,h.max,lim.an=20,lim.pourc=0.70) # 70% (avec limite de
20 ans)
stop.elagage(D,h.min,h.max,lim.an=20,lim.pourc=0.80) # 80% (avec limite de
20 ans)
```

>stop.elagage(D,h.min,h.max,lim.an=20,lim.pourc=0.80)
[1] "Au bout de 15 ans, 80 % des arbres avec potentiel sont élagués sur 6 m, soit 239 arbres sur 299 (total parcelle= 388 arbres)"

Histogramme de la hauteur totale à 15 ans

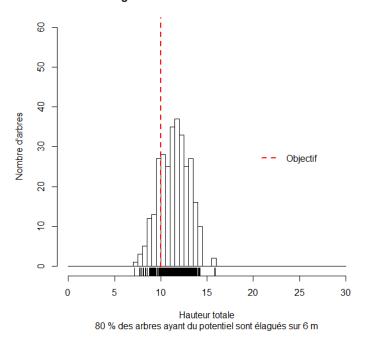


Figure 5 : Histogramme de la hauteur totale à 15 ans (en m), plantation Arc

2. Cas particulier : simulation de densification

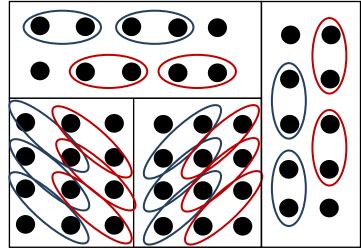
La densification est ici le fait de planter 2 plants (un couple) au même point de plantation (à environ 1 m d'écart) puis de faire une sélection vers 5/7 ans pour n'obtenir qu'un seul arbre par point de plantation. Bien évidemment, le plant gardé est celui que l'on estime comme étant potentiellement le meilleur. Le second plant est quant à lui coupé et peut être valorisé en le transformant en BRF (bois raméal fragmenté utilisable en paillage du sol par exemple). Avec une densification, on s'attend à une amélioration de la qualité du bois (selon les critères du tableau 1) mais aussi à une augmentation du volume récolté. Dans la réalité, la sélection se fait principalement par rapport à la circonférence des arbres mais aussi par rapport à d'autres aspects comme l'état sanitaire et la forme du tronc et des branches. Grâce au code R, la sélection se fait de manière totalement objective, en comparant uniquement les circonférences de la colonne 6 (circonférence lors de l'année de sélection). A ce moment, on se heurte à 2 problèmes :

- Les parcelles étudiées ayant des répartitions de plants homogènes, entre quels plants fait-on la sélection ? Quels sont les couples ?
- Les parcelles étudiées sont composées (majoritairement) de parcelles unitaires constituées d'individus issus d'un même clone, qui possèdent donc des qualités génétiques identiques. Or dans les plantations agroforestières composées d'espèces de feuillus précieux, la plupart des espèces plantées sont issues de semis, et quand il s'agit de clones (orme Lutèce, merisier Gardeline,...), ils sont rarement plantés côte à côte, et encore moins densifiés. En effet ces cultivars de valeur n'ont pas besoin de l'éclaircie visant les arbres issus de semis. Comment éliminer l'effet clonal pouvant apparaître dans les dispositifs qui ne sont pas composés de parcelles unitaires monoarbre ?

En pratique dans une plantation agroforestière densifiée, la direction de la sélection est définie dès la plantation (puisque les plants sont rapprochés intentionnellement. Dans le cas de ces plantations de merisier, on considère toutes les possibilités concernant le sens de sélection :

- Horizontale,
- Verticale,
- Diagonale descendante,
- Diagonale ascendante.

Pour chacune de ces directions, on distingue encore 2 cas : si l'on commence dès le $\mathbf{1}^{er}$ individu, ou si l'on commence seulement au $\mathbf{2}^{ème}$. On obtient les 8 sélections représentées sur la figure 6.


Concernant la présence des clones, il est nécessaire de ne pas prendre entre compte les couples composés d'arbres d'issus d'un même clone. Ce choix aura des conséquences sur les dispositifs composés de nombreuses parcelles unitaires non mono-arbre. En effet, les sélections qui se feront selon la direction des parcelles unitaires auront un nombre restreint d'individus. Le choix de garder les analyses faites dans ces directions se fera au cas par cas.

Pour toutes ces possibilités de sélection, on rapproche virtuellement les individus pour former des couples, puis on effectue la comparaison de leur circonférence. Ce rapprochement virtuel permet de garder l'effet milieu commun (sol et micro-environnement), à peu de mètres près, pour les deux arbres successifs que l'on trouverait dans une parcelle agroforestière classique densifiée avec des couples séparés d'un mètre, et plantés tous les 8 à 10 mètres sur chaque ligne. Lors de la sélection, il faudra distinguer plusieurs cas :

- L'une des positions (voire les 2) ne comporte pas d'individu. On ne peut pas considérer qu'il y a eu densification. Aucun arbre n'est gardé.
- Les 2 arbres du couple virtuel possèdent le même numéro de clone. Il n'y a pas la variabilité génétique qu'il y a dans la réalité. Aucun arbre n'est gardé.

Les 2 arbres du couple possèdent des numéros de clones différents. On compare alors leurs circonférences mesurées l'année qui a été définie comme année de sélection. L'arbre possédant la plus grande circonférence sera gardé. De manière arbitraire, s'il y a égalité entre les circonférences, le 1^{er} individu du couple sera choisi.

Sélection Horizontale 1^{er} individu Sélection Horizontale 2^{ème} individu

Sélection
Verticale 1^{er}
individu
Sélection
Verticale 2^{ème}
individu

Descendante 1^{er}
individu
Sélection Diagonale
Descendante 2^{ème}
individu

Sélection Diagonale

Sélection Diagonale
Ascendante 1^{er} individu
Sélection Diagonale
Ascendante 2^{ème} individu

Figure 6 : Formation des couples selon les directions

On utilise le code suivant pour effectuer la sélection pour la direction horizontale, 1^{er} individu. Grâce à celui-ci, on récupère les données des arbres qui ont été sélectionnés, regroupés dans le dataframe *Ref_max2.Horiz1*. Le code concernant les autres directions est présent en annexe 8.

```
# Formation des couples horizontaux en commençant par le 1er individu et
sélection du MEILLEUR plant dans chaque couple
# Initialisation du vecteur de sortie
temoin max2.horiz1<-c()
# Détermination du max en x (colonnes) et en y (lignes)
Mx<-floor(max(as.numeric(D$xx))/2)-1
My<-max(as.numeric(D$yy))-2
# Balayage pour la sélection des meilleurs arbres
for (x in 1:Mx)
  for (y in 1:My)
    if(is.finite(D[D$xx==2*x-1 & D$yy==y,6))==T & is.finite(D[D$xx==2*x &
D$yy==y,6])==T & D[D$xx==2*x-1 & D$yy==y,1]!=D[D$xx==2*x & D$yy==y,1]) # Si
on a un couple (pas de NA) dont le numéro de clone est différent
      if (D[D$xx==2*x-1 & D$yy==y,6] >= D[D$xx==2*x & D$yy==y,6])
        temoin max2.horiz1<-c(temoin max2.horiz1,c(D[D$xx==2*x-1 &
D$yy==y,3])) # Sélection du premier arbre
      if (D[D$xx==2*x-1 & D$yy==y, 6] < D[D$xx==2*x & D$yy==y, 6])
        temoin_max2.horiz1<-c(temoin max2.horiz1,c(D[D$xx==2*x &
D$yy==y,3])) # Sélection du second arbre
      }
    temoin max2.horiz1
```

```
# On transforme en dataframe en faisant le lien avec D
Ref_max2.Horiz1<-D[temoin_max2.horiz1,]</pre>
```

```
# Quelques statistiques descriptives
summary(Ref_max2.Horiz1[,6:12])

# Volume de Bois par Catégorie à 40 ans
# Matrice réunissant les pourcentages et les volumes en m3
Vol Max40.Horiz1<-Sum.Pourc.Vol.Cat(Ref max2.Horiz1)</pre>
```

A noter que chaque sélection correspond à un certain nombre de couples et donc à un certain nombre d'individus. C'est pour cette raison que l'on utilise la fonction <code>Bois.n.plants()</code>. Elle permet de rapporter les volumes calculés à une population de n=50 plants (densité optimale pour un ha en agroforesterie intraparcellaire).

On effectue ces mêmes manipulations en utilisant le critère de sélection inverse : l'arbre sélectionné est celui dont la circonférence est la plus petite. Les données seront dans ce cas enregistrées dans le dataframe *Ref_min2.Horiz1*. Grâce à ces 2 cas particuliers, on espère obtenir 2 extrêmes concernant les volumes estimés (et les revenus) : une barre haute et une barre basse. A noter que ces situations sont considérées comme étant le meilleur et le pire cas par rapport à la qualité des arbres. Cela est à différencier avec le minimum et le maximum en termes de volume de bois par catégories puisque la sélection des meilleurs plants implique un changement de catégorie du bois.

Pour chacune des 8 sélections et pour les 2 cas (sélection des meilleurs arbres, sélection des pires arbres), on effectue des sorties graphiques telles que la représentation des arbres sélectionnés, leur taux d'élagage à 10 ans, le temps qu'il faut pour avoir 70 ou 80% des individus à potentiel élagués ainsi qu'un histogramme du diamètre à 10 ans (ou 9 ou 11 : année de la colonne 10). Cela permet de vérifier la cohérence des résultats en se posant ce type de questions :

- Le diamètre des individus considérés comme étant les meilleurs est-il supérieur aux pires individus ?
- Le temps d'élagage des meilleurs individus est-il plus rapide que pour les pires ?

3. Sélections aléatoires

Une fois le cas de la plantation densifiée simulé, on s'intéresse au cas le plus couramment rencontré en agroforesterie : la plantation non densifiée. Dans ce modèle, un seul plant est planté par point de plantation. On ne peut donc pas faire une sélection des plants à garder au bout de quelques années. Pour simuler ce type de plantation, on utilise des fonctions permettant de reprendre exactement les mêmes couples que lors des sélections des meilleurs individus (cas de densification). L'unique différence, mais qui est majeure, est le tirage aléatoire des individus à garder grâce à la fonction sample (). Cela permet de simuler une plantation non densifiée. Pour obtenir un

échantillon représentatif, on effectue dans chacune des directions 100 tirages, qui représentent 100 simulations de plantations non densifiées.

```
# Le nombre de tirages aléatoires
nb.sample <- 100

set.seed(1234) # on initialise le tirage (permet d'avoir un résultat
reproductible)</pre>
```

La fonction <code>apply()</code> permet de lancer le nombre de fois voulu la fonction désignée (ici <code>samplechl()</code>). On obtient une matrice <code>tirage2.horiz1</code> dont chaque colonne représente un tirage. Chaque ligne i contient quant à elle le numéro de l'individu sélectionné au sein du couple numéro i.

Ensuite, j'utilise la fonction créée data.tirage(). Elle permet de créer une liste de 3 éléments:

- Data: une liste de 100 dataframes qui comporte toutes les informations des individus tirés au sort pour chaque tirage,
- Vol : un dataframe des volumes (en m3) par catégorie (1 ligne = 1 tirage),
- Pourc : un dataframe du pourcentage que représente chaque catégorie par rapport au volume total (1 ligne = 1 tirage).

```
Tirage2.Horiz1<-data.tirage(tirage2.horiz1)</pre>
```

On extrait les volumes, puis comme pour les simulations de densifications, je rapporte les volumes à une population de 50 plants.

Je répertorie les pourcentages d'individus contribuant aux différentes catégories de bois au sein de la matrice M. Chaque ligne de cette matrice représente un tirage aléatoire. Les 4 colonnes correspondent aux 4 catégories de bois (A, B, C et D). Puis je réutilise la fonction apply() associée à la fonction mean() pour obtenir une moyenne des proportions d'individus contribuant à chaque catégorie, et ce, pour chaque sélection.

```
M<-matrix(NA, nrow=nb.sample, ncol=4)
for (i in 1:nb.sample)
{
    X<-ind.in.Cat(Tirage2.Horiz1$Data[[i]])
    M[i,]<-X[2,1:4]
}</pre>
```

```
Prop.ind.H1<-round(apply(M,MARGIN=2,FUN=mean))</pre>
```

4. Compilation des directions

Après avoir réalisé ces manipulations dans toutes les directions, j'obtiens un total de 8*100=800 tirages aléatoires. J'utilise la fonction Vol.all.Tirages (), pour obtenir un dataframe

dont les lignes correspondent aux 800 tirages et dont les colonnes sont les volumes de bois des 4 catégories ainsi que la direction du tirage en question. En ramenant les valeurs obtenues à 50 arbres, j'ai approximé les volumes de bois de parcelle plantée à 50 plants à l'hectare.

```
# Matrice comportant les volumes dans chaque catégorie de bois pour tous
les tirages (ggsoit la direction)
Vol50.Cat<-Vol.all.Tirages()</pre>
# Pour chaque catégorie (+ Total), on extrait le volume minimum et maximum
calculé
Vol50.min.max<-matrix(NA, ncol=2, nrow=5)</pre>
colnames(Vol50.min.max)<-c("min", "max")</pre>
rownames (Vol50.min.max) <-c ("Cat.A", "Cat.B", "Cat.C", "Cat.D", "Total")
for (i in 1:5)
  Vol50.min.max[i,1]<-</pre>
min(Vol50.Min.Horiz1[i], Vol50.Min.Horiz2[i], Vol50.Min.Verti1[i], Vol50.Min.V
erti2[i], Vol50.Min.Diag.Desc1[i], Vol50.Min.Diag.Desc2[i], Vol50.Min.Diag.Asc
1[i], Vol50.Min.Diag.Asc2[i])
  Vol50.min.max[i,2]<-
max(Vol50.Max.Horiz1[i],Vol50.Max.Horiz2[i],Vol50.Max.Verti1[i],Vol50.Max.V
erti2[i], Vol50.Max.Diag.Desc1[i], Vol50.Max.Diag.Desc2[i], Vol50.Max.Diag.Asc
1[i], Vol50.Max.Diag.Asc2[i])
}
```

J'effectue une sortie graphique en affichant les histogrammes des volumes de bois de la plantation selon la catégorie de bois (annexe 17). Cela permet de visualiser la répartition des volumes de chaque tirages.

5. Sortie tableau

Grâce à un code *R*, je regroupe les informations obtenues dans chacune des directions de sélections au sein d'un tableau (annexe 18). On peut distinguer 4 types d'informations :

- Les informations concernant la direction de sélection: le nombre de plants sélectionnés, leur diamètre moyen, le nombre d'individus avec potentiel, leur diamètre moyen.
- Les informations des volumes obtenus pour chaque sélection dans les 2 cas particuliers et des pourcentages
- Les informations adaptées pour une plantation de 50 plants : les volumes si sélection des pires plants et des meilleurs, l'écart entre les 2, le volume moyen des parcelles non densifiées, les rapports entre le volume si sélection des pires plants (ou des meilleurs plants) et le volume moyen.
- La traduction des informations précédentes sous forme de revenu (en euro).

En regroupant ainsi les informations, on s'apperçoit que pour quelques plantations, il existe une disparité entre le nombre de plants sélectionnés selon la direction. Cela concerne 4 parcelles sur les 15 étudiées : Bessines, Boulzicourt, Lyons, Soulaures. Il est évident que selon la géométrie de la parcelle, le nombre de plants sélectionnés varie selon la direction. Cependant, certains cas sont si extrêmes qu'il a été décidé de les supprimer pour éviter de biaiser les résultats. En effet, si l'on ne fait pas de vérification, je devrais assimiler un résultat obtenu grâce à 17 plants à un résultat obtenu grâce à 200 plants (cas de la plantation Lyons). Un critère a donc été mis en place pour éliminer ces

cas particuliers: on considère le nombre maximum de plants sélectionnés et l'on vérifie si dans chaque direction, le nombre de plants est supérieur au tiers du nombre maximum. C'est après avoir appliqué ce critère que l'interprétation a eu lieu.

IV. Interprétation des résultats

A partir des 15 tableaux obtenus, il est possible de comparer les données et de faire ressortir différents éléments grâce à *Excel* ou à *R*. Les comparaisons se font sur les valeurs estimées pour des plantations de densité finale de 50 arbres.

Le premier élément important à mettre en avant est l'impact de la densification sur la quantité de bois. En effet, sur la figure 7 on observe non seulement que la quantité totale par plantation est supérieure lorsqu'il y a densification (phénomène qui avait déjà été remarqué par Estelle Moulin) mais que cette augmentation a lieu au sein de catégories de bois précises.

En effet, dans la majorité des plantations (12 sur 15) l'amélioration a principalement lieu au sein de la catégorie de bois A (catégorie dont le bois se vend le plus cher). Cependant, on peut observer 3 plantations (Bazeuge, Boulzicourt et Lyons) pour lesquelles l'amélioration se situe plutôt au niveau des 3 autres catégories : B, C et D. Ces plantations sont celles dont la croissance est la plus faible à 10 ans (annexe 16, la coloration est principalement jaune). Dans ces cas particuliers de terrains peu favorables au merisier, la totalité des arbres a une croissance tellement faible que la densification ne permet pas d'obtenir une majorité de bois de catégorie A à 40 ans. Il faudrait attendre 60 ou 70 ans pour que certains arbres puissent être commercialisés en catégorie A.

A noter qu'une plantation (Bessines) a une croissance a 10 ans faible mais que le volume de bois de catégorie A est élevé. Cela est dû à la projection du diamètre. En effet, la croissance observée entre la dixième année et la quinzième année de la plantation s'avère être élevé. Or, puisque j'utilise ce taux de croissance pour la projection, la plantation devient une plantation avec un rendement intéressant. La croissance a d'abord été pénalisée, puis a pu s'exprimer à Bessines. Mais les facteurs favorables entre 10 et 15 ans ne le resteront peut-être pas toujours ensuite. Cette plantation illustre le fait qu'une projection réalisée à partir de la croissance obtenue pendant quelques saisons est nécessairement très approximative. Réitérer les analyses sur de nombreuses plantations permet une plus grande robustesse des conclusions.

Un second élément visible est que plus le volume de bois de catégorie A est important, plus le revenu est important. Ce rapport entre les 2 éléments est logique car il s'agit de la catégorie de bois la plus chère.

Dans toutes les plantations observées, la densification permet d'améliorer son revenu lié à la vente de bois (car le volume total est toujours amélioré). Cependant, le pourcentage d'amélioration dépend de la plantation. On peut observer le pourcentage d'amélioration sur la figure 8.

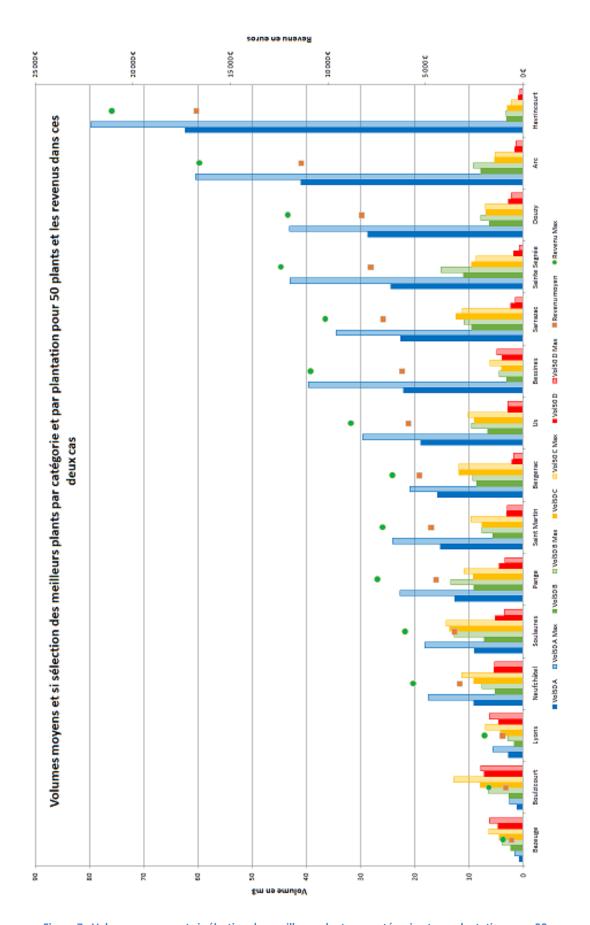


Figure 7 : Volumes moyens et si sélection des meilleurs plants par catégorie et par plantation pour 50 plants et les revenus dans ces deux cas

La première observation à faire sur la figure 8 est que le pourcentage d'amélioration a tendance à diminuer lorsque le revenu moyen augmente. Cependant, certains points ressortent par leur particularité : Boulzicourt et Bergerac.

La valeur d'amélioration de Boulzicourt est à considérer avec précaution. En effet, s'il l'on observe le tableau récapitulatif de la plantation Boulzicourt, une direction ressort par ses valeurs supérieures d'environ 50% par rapport aux autres directions. Il s'agit de la direction de sélection verticale, second individu. La raison des valeurs dans cette direction n'a pas été identifiée. Les éléments que l'on connait sont que le nombre de plants sélectionnés est plus faible et que le diamètre moyen des plants avec potentiel est légèrement meilleur que dans les autres directions. Le nombre plus faible de plants sélectionnés est dû au fait que les clones sont disposés selon la direction verticale, soit un par un, soit deux par deux à la suite, si bien que la direction de sélection verticale, premier individu, n'est pas impactée.

En ce qui concerne la plantation de Bergerac, le pourcentage d'amélioration est plutôt faible (26%) par rapport aux plantations dont les revenus moyens sont dans le même ordre de grandeur. Cela peut être expliqué en observant la représentation graphique de la plantation (annexe 16). Grâce à celle-ci, on observe une certaine homogénéité de la croissance des arbres (à la fois en hauteur et en diamètre) dans la plus grande partie de la plantation. Cette plantation possède également un nombre non négligeable d'arbres morts mais le fait qu'ils soient regroupés réduit l'impact que cela aurait pu induire sur le volume.

Globalement, en considérant uniquement les revenus (et non les coûts supplémentaires engendrés), il est toujours intéressant de densifier, quelle que soit la qualité de la parcelle (tant que les prémisses indispensables sont respectés : espèce plantée en adéquation avec les conditions pédoclimatiques locales puis soins sylvicoles corrects). Le surcoût de plantation en densifiant (environ +600 € / 50 arbres) est compensé assez rapidement par deux avantages : il n'y a pas à remplacer des plants faibles ou morts, et les tailles et élagages s'arrêtent plus tôt.

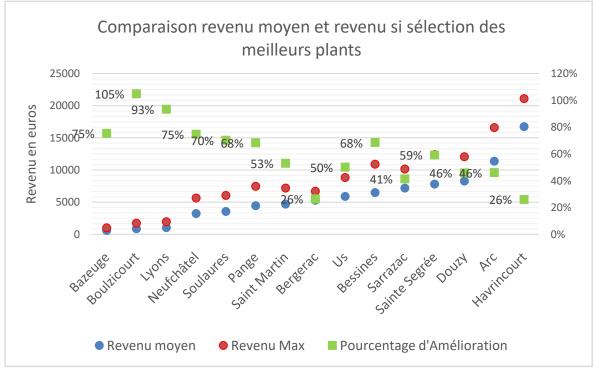


Figure 8 : Comparaison revenu moyen et revenu maximum

La figure 9 permet de représenter via *R* et des boxplots les caractéristiques de position du volume de bois par catégorie, sur l'ensemble des tirages (800 ou 700 si une direction a été supprimée). De plus, les volumes maximum et minimum de la catégorie A sont également représentés. Il s'agit des volumes obtenus s'il y a eu densification avec une sélection des meilleurs (maximum) ou des pires (minimum) plants. Ces indications ne sont affichées que pour la catégorie A car il s'agit de la catégorie qui est la plus intéressante économiquement.

L'étendue interquartile (représentée par la hauteur du rectangle) est à mettre en relation avec les observations que l'on peut faire sur les représentations graphiques des plantations. En effet, plus une plantation est homogène, moins le fait de sélectionner le meilleur plant du couple n'a d'impact (par rapport à la sélection aléatoire). En revanche l'hétérogénéité d'une plantation n'implique pas forcément un écart interquartile important (exemple de la plantation Saint-Martin).

Categorie A Categorie C Categorie C Categorie C Selection melleurs Sel

Figure 9 : Représentation des volumes par catégorie de la totalité des tirages avec un classement selon le revenu moyen

V. Olympe

1. Logiciel Olympe

Développé conjointement par l'INRA et le CIRAD (Centre de coopération internationale en recherche agronomique pour le développement), Olympe est un logiciel d'aide à la décision, de simulation et de modélisation du fonctionnement d'exploitations agricoles. Ces simulations peuvent se faire à différent niveaux :

- Une exploitation agricole seule,
- Un groupement d'exploitations qui représente un territoire.

Les utilisateurs de ce logiciel peuvent être des chercheurs mais aussi des agriculteurs. Dans le cas des chercheurs, l'étude peut se porter sur la comparaison des itinéraires techniques.

Olympe est actuellement utilisé par divers organismes de développement, de recherche et d'enseignement en France et à l'étranger, dont le CIRAD pour des fermes agroforestières en milieu tropical. En revanche, il n'est pas adapté au modèle européen concernant les cultures, les coûts et la gestion.

2. Adaptation pour des fermes agroforestières européennes

Lors du travail effectué pour adapter Olympe, je me suis focalisée uniquement sur les parties « arbres » et « bois » de l'agroforesterie. Je n'ai pas considéré les cultures intercalaires, bien que la présence d'arbres influe sur celles-ci : réduction de la surface cultivée, contrainte pour les rotations, impact des arbres sur le rendement... Un autre élément négligé est la récolte de fruits ou de miel en cas de plantation d'arbres fruitiers ou d'installation de ruches. Il faut garder à l'esprit que la gestion d'une parcelle agroforestière diffère selon la personne en charge, selon les intervenants,... Je m'en suis rapidement rendu compte lors d'échanges sur les techniques et les périodes de taille de formation. Pour faire des tests avec Olympe, il a fallu faire des choix pour certains éléments. Cependant, il est possible de réadapter facilement le logiciel à sa vision.

a. Théorie

Olympe utilise une base de données se présentant sous forme de multiples tableurs dans lesquels il est nécessaire de renseigner des coûts, des heures de travail, des quantités de produits récoltés,... Cependant, avant de s'intéresser aux données nécessaires il faut définir différents éléments indispensables :

- Les produits récoltés,
- Les charges engendrées (les coûts),
- Les heures de travail,
- Les itinéraires techniques.

Dans notre cas, les produits récoltés sont uniquement des volumes de bois en m³ dont le prix change en fonction de l'espèce et de la qualité du bois. Nous n'avons pas ici distingué les espèces de feuillus précieux potentiellement utilisables en agroforesterie une à une, nous avons simplement considéré qu'elles pouvaient être de deux catégories, soit de croissance rapide (merisier, chataîgnier, érable sycomore, mûrier, noyer hybride, robinier,...) soit de croissance lente (pommier, poirier,

cormier,...), pour un lieu donné qui leur convienne. La qualité est indiquée par des lettres, A étant la meilleure et D la plus mauvaise. Elle dépend ici seulement du diamètre de la bille de bois mais dans l'idéal, cela considère la présence (ou non) de défauts. D'autres types de production pourraient être envisagés, comme la production de bois de chauffage. Ils impliqueraient d'autres espèces et itinéraires techniques et n'ont pas été développés ici, mais pourraient l'être.

Tableau 4: Ensemble des charges introduites dans Olympe

Prestation Plantation	Fournitures Plantation	Entretien
Préparation des Sols Intervenant	Plants	Taille Elagage Intervenant
Piquetage Intervenant	Piquets	Sélection Arbres Intervenant
Plantation Intervenant	Paillage	Enlèvement Protections Intervenant
Analyse des Sols	Protections	Regarnis
	Perchoirs	

Les heures de travail sont liées au point précédant, dans la mesure où il s'agit de l'exploitant qui réalise une partie ou la totalité des travaux lui-même. Pour pouvoir déterminer les quantités d'heures, il faut prendre en compte l'expérience de l'exploitant pour la tâche en question. Durant les premières années, pour une première parcelle agroforestière créée, le temps de taille peut être multiplié par 2 par manque d'expérience.

Un itinéraire technique correspond à un ensemble de choix caractérisant la manière dont on cultive selon un objectif que l'on se donne. Notre objectif est lié à la production de bois. Pour définir ces itinéraires techniques, il faut dans un premier temps définir les variables importantes sur lesquels un choix est à faire. Une fois encore, les discussions avec des professionels ont été indispensables pour déterminer ces variables. Les itinéraires techniques définis sont les combinaisons des éléments suivants :

- La fertilité du sol (liée à la parcelle mais à considérer dans les résultats),
- La vitesse de croissance (lente ou rapide selon les espèces) qui définira l'âge des plants pour la récolte finale,
- La qualité des plants (ordinaire ou améliorée) qui influera sur le volume et la qualité de la production ou sur l'année de récolte,
- La densification (planter deux plants à chaque point de plantation pour permettre une sélection du meilleur arbre) ou non qui influera également sur le volume et la qualité de la production ou sur l'année de récolte.

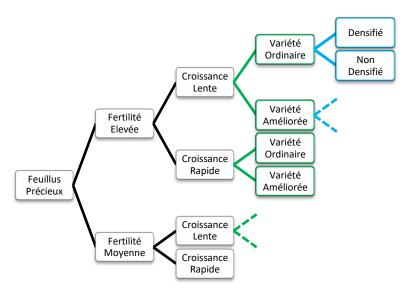


Figure 10 : Itinéraires techniques, cas considérés pour des parcelles plantées de feuillus précieux

b. Pratique

Le logiciel Olympe se présente avec une interface principale (figure 11) de laquelle on accède à tous les tableurs. La première étape est de définir les unités utilisées ainsi que les taux de tva en vigueur actuellement (réduit : 5.5%, normal : 20%), puis les produits et les charges. J'ai créé un guide pratique d'Olympe adapté, disponible en annexe 19. Il explique les manipulations de base possibles.

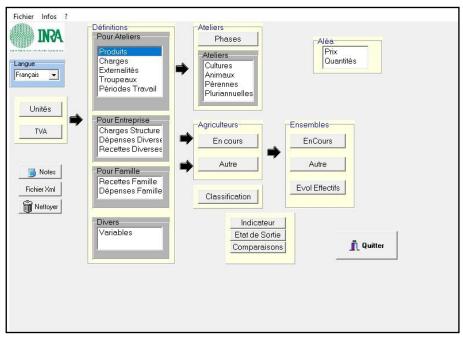


Figure 11: Interface principale d'Olympe

Dans la pratique, il m'est impossible d'obtenir tous les itinéraires techniques définis. Cependant, en utilisant les résultats obtenus pour nos 15 plantations il devrait être possible d'en déterminer quelques uns. L'attention porté au fil des années (heures de taille et d'élagage passés par an et qualité du travail effectué) est en pratique très variable. Si la croissance est en moyenne plus lente (sol peu fertile, variété ordinaire, espèce de croissance lente, pas de densification), le nombre d'années d'élagage augmente, mais pour ce premier test nous avons négligé cette variation. Le degré

de soins dépend aussi des choix et des compétences du propriétaire ou de son délégué. Le résultat de l'absence ou la faiblesse de soins peut être traité par des aléas sur les quantités (des arbres non élagués seront en catégorie D seulement).

Pour ma part, j'ai testé le logiciel avec les résultats obtenus grâce aux plantations Arc et Douzy (en densifié et en non densifié). J'ai donc crée au sein de l'onglet pérennes de nouvelles plantations types. Je considère que la densité finale visée est toujours de 50 pieds par ha. J'indique au sein de ces plantations les volumes de bois obtenus. Pour ce qui est des coûts, j'ai utilisé comme référence des coûts déterminés par Frédérique Santi lors d'une étude (Santi F & Moulin E, 2016)) ainsi que les prix indiqués dans un catalogue de pépinière (Pépinières Lemonnier, 2016). Le taux de regarnis (si non densification) est fixé à 10%. à dire d'experts Cela signifie que je considère que durant la deuxième année, il faudra débourser 10% du prix total des fournitures pour les plants (plants, piquets, paillage, protections).

Les tests ont surtout été réalisés pour voir le type de sortie que permet de faire Olympe. De nombreux éléments sont affichables mais avec les données que je possède, seuls les résultats sur les soldes ont un réel intérêt. Olympe permet de présenter les mêmes paramètres sous des formes différentes selon les préférences : sous forme de graphique (figure 12) ou sous forme de tableau récapitulatif (figure 13).

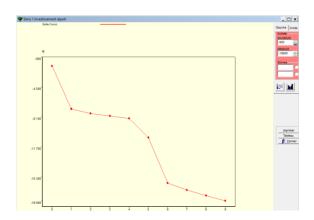


Figure 12 : Courbe du solde cumulé pour la simulation avec création de 2 parcelles de 5 ha à 5 ans d'intervalle (sur 10 ans)

Valeur En : €	omique									
Valeur Eli . e	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
Chiffre d'affaire										
MARGE	-2 000	-5 150	-550	-300	-300	-2 300	-5 450	-850	-650	-650
EBE	-2 000	-5 150	-550	-300	-300	-2 300	-5 450	-850	-650	-650
CAF	-2 000	-5 150	-550	-300	-300	-2 300	-5 450	-850	-650	-650
SOLDE	-2 000	-5 150	-550	-300	-300	-2 300	-5 450	-850	-650	-650
SOLDE CUMULE	-2 000	-7 150	-7 700	-8 000	-8 300	-10 600	-16 050	-16 900	-17 550	-18 200
Produits Ceg										
Résultat Ceg	-2 000	-5 150	-550	-300	-300	-2 300	-5 450	-850	-650	-650

Figure 13 : Récapitulatif par année du solde cumulé pour la simulation avec création de 2 parcelles de 5 ha à 5 ans d'intervalle (sur 10 ans)

Une caractéristique intéressante d'Olympe est la possibilité de créer un ensemble d'agriculteurs. En effet, à partir des différents agriculteurs définis séparément, il existe une option qui permet de sommer les exploitations et de s'intéresser au fonctionnement d'une zone, d'une région agricole. Cette fonctionnalité sera à explorer pour de prochaines études.

VI. Discussion et perspective

Certaines parcelles boisées que j'ai analysées (Bazeuge, Boulzicourt et Lyons) se distinguent par leurs faibles rendements. Or, par définition, les plantations agroforestières se font sur des parcelles agricoles (des terres plutôt bonnes) donc on s'attend à un minimum de résultat, ce qui n'est pas le cas ici. Il est possible que les rendements soient faibles car l'espèce n'était pas assez adaptée à ces parcelles. Si cela s'avère être le cas, il s'agit d'un problème lors de la préparation. Or, pour tester Olympe, il a été décidé que le préalable était que les espèces étaient adaptées à la parcelle. En pratique, naturellement, il arrive qu'on se trompe sur l'adaptation, au moins sur une partie de parcelle (mauvaise estimation de la qualité, espèce peu connue localement, mauvais conseil,...). Les parcelles de merisier de faible croissance illustrent ces cas, mais aussi les cas d'une espèce à croissance faible, qui arriverait à diamètre exploitable plus tard (vers 60 ans par exemple).

Dans l'étude effectuée, les résultats n'ont pas encore été mis en relation avec les caractéristiques des parcelles avec un retour à réaliser vers le dossier de plantation et discussion avec l'expert qui les a plantés et suivi (J Dufour, retraité). Cela rend compliqué la comparaison des volumes (ou revenus) obtenus.

Dans le cas de plantations qui ne comportent pas de clones (présence de diversité génétique), il est nécessaire d'indiquer un numéro de clone (pour le bon fonctionnement du code). Or, chaque plant est différent de tous les autres donc le numéro de clone doit être différent pour chaque plant. La méthode serait d'assimiler le numéro de clone au numéro d'individu qui est l'identifiant de l'individu donc unique.

Un autre type de plantation est aussi possible. En effet, certaines plantations expérimentales sont composées à moitié de clones et à moitié de semis (par exemple, Liancourt, successions de « un colonne de clones, deux colonnes de semis »). Pour traiter de tels cas de la façon la plus simple possible, sans retoucher au code, il faudra supprimer les sélections suivant la répétition clonale (généralement verticale). Cela permettra une sélection homogène sur l'ensemble de la plantation.

Le code étant généralisé, il est applicable à n'importe quelle plantation de n'importe quelle espèce (tant que le fichier répond aux conditions détaillées). Cependant, il pourrait encore être retravaillé et simplifié pour réduire le temps de calcul. Actuellement, l'analyse de la plantation Arc (388 plants, population de plants la plus faible) se réalise en environ 6 minutes et celle de la plantation Havrincourt (1547 plants, population de plants la plus élevé) en environ 28 minutes (pour 100 tirages aléatoires par direction).

Pour améliorer l'analyse et la rendre plus proche de la réalité, il faudrait rajouter une étape. En effet, les arbres agroforestiers ne sont pas tous coupés à 40 ans. Si la croissance a été rapide, il est possible de réaliser un premier abattage à 30 ans. Pour cela, il faudrait à partir des données estimées à 30 ans déterminer le nombre d'arbres ayant atteint la catégorie A. Si leur nombre est assez important pour remplir un camion alors il est intéressant de les couper au lieu d'attendre encore 10 ans. Cela permet des recettes mais aussi de limiter les risques liés aux éléments biotiques ou abiotiques (tempête, feu, ravageurs, variations de prix...).

Glossaire

UR AGPF: Unité de Recherche Amélioration, Génétique et Physiologie Forestière

INRA: Institut National de la Recherche Agronomique

SPEAL: Sélection Participative d'Espèces Annuelles ou Ligneuse

Couple/Trio de plants : 2/3 plants présents au même point de plantation permettant la sélection du meilleur au bout de quelques années

EPST : Etablissement Public à caractère Scientifique et Technologique

Agroforesterie: pratiques associant arbres, cultures et/ou animaux sur une même parcelle agricole, en bordure ou en plein champ

Densification : planter deux plants à un même point de plantation pour pouvoir en éliminer un sur deux ensuite

Clone: ensemble d'individus issus de bouturage

BRF: Bois Raméal Fragmenté

CIRAD : Centre de coopération Internationale en Recherche Agronomique pour le Développement **Itinéraire technique** : ensemble des choix concernant la conduite d'une culture selon l'objectif fixé

Table des illustrations

Figure 1 : Visite de parcelle agroforestière, lle-Bouchard (juin 2017)	6
Figure 2 : Types de variables	17
Figure 3 : Représentation de la parcelle Arc, selon la hauteur et le diamètre à 10 ans	19
Figure 4: Histogramme de la hauteur totale à 10 ans (en m), plantation Arc	22
Figure 5 : Histogramme de la hauteur totale à 15 ans (en m), plantation Arc	23
Figure 6 : Formation des couples selon les directions	
Figure 7 : Volumes moyens et si sélection des meilleurs plants par catégorie et par plantation pour 50 pl	ants
et les revenus dans ces deux cas	30
Figure 8 : Comparaison revenu moyen et revenu maximum	31
Figure 9 : Représentation des volumes par catégorie de la totalité des tirages avec un classement selon l	
revenu moyen	
Figure 10 : Itinéraires techniques, cas considérés pour des parcelles plantées de feuillus précieux	35
Figure 11 : Interface principale d'Olympe	
Figure 12 : Courbe du solde cumulé pour la simulation avec création de 2 parcelles de 5 ha à 5 ans	
d'intervalle (sur 10 ans)	36
Figure 13 : Récapitulatif par année du solde cumulé pour la simulation avec création de 2 parcelles de 5	
5 ans d'intervalle (sur 10 ans)	
Tableau 1 : Catégories de bois, prix minimal inspiré des prix minimaux pour le merisier, chataîgnier, frên	e,
érable (Rérat B., 2016)	7
Tableau 2 : Extrait du fichier original de la plantation Arc avec explication des colonnes	8
Tableau 3 : Liste des plantations étudiées	9
Tableau 4: Ensemble des charges introduites dans Olympe	34

Bibliographie

CIRAD, INRA, IRD & IAMM (2007). Olympe Simulateur technico-économique des exploitations agricoles http://www.olympe-project.net.

Dufour J, Santi F, Migeot J, Dowkiw A (2012). Tailles de formation et élagages du merisier et du frêne. *Forêt Entreprise* 207 : 26-30

Dupraz C & Liagre F (2011). Agroforesterie: des arbres et des cultures, 400 p

Moulin E. (2016). Sélection d'arbres en lignes agroforestières : deux méthodes, 117 p

In K., Rondeux J & Thill A (1972). Etude dendrométrique de l'érable sycomore (*Acer pseudoplatanus* L.) et du merisier (*Prunus avium* L.), 162-190

Pépinières Lemonnier (2016). Catalogue, 260 p

Rérat B (2016). Cours des bois sur pieds. Forêt de France n°591, p 18

Santi F & Moulin E (2016). Lignes agroforestières : la qualité génétique des arbres compte ! Présentation à la Journée Nationale Agroforesterie, Paris, France, 2017-02-01

Annexes

Annexe 1 : Fonctions R utilisées pour créer le dataframe à analyser

Annexe 2 : Fonctions pour faire des vérifications sur les données

Annexe 3 : Fonctions pour réaliser les tirages aléatoires

Annexe 4 : Fonctions de manipulations de données

Annexe 5: Fonction graphique

Annexe 6 : Fonctions préparations pour les tableaux

Annexe 7: Code d'analyse

Annexe 8 : Code pour la sélection des pires et des meilleurs plants

Annexe 9 : Code pour la sélection aléatoire des plants

Annexe 10: Code pour la compilation des directions

Annexe 11 : Code de sauvegarde et d'importation des données

Annexe 12 : Code pour les sorties graphiques des sélections des meilleurs et des pires plants

Annexe 13 : Code pour les sorties graphiques des tirages aléatoires

Annexe 14 : Code pour les sorties graphiques des tirages compilés

Annexe 15 : Code pour créer le tableau récapitulatif

Annexe 16: Représentations graphiques des plantations

Annexe 17 : Histogrammes par catégorie de bois du volume de bois à 40 ans selon les plantations en combinant toutes les directions de sélection

Annexe 18 : Tableaux récapitulatifs des 15 plantations

Annexe 19: Guide pratique d'utilisation d'Olympe

Annexe 1 : Fonctions R utilisées pour créer le dataframe à analyser

Fonction pour créer une zone rectangulaire contenant la parcelle

Plantation.Rect.Donnees<-function()

```
# Mise en place de la plantation rectangulaire avec les données de la
parcelle réelle
       # Obtenir un Data.frame avec les individus manquants
       # OUTPUT :
       # D : data.frame avec les données des individus (les 10 premières
colonnes remplies)
       # Nombre totale de position si la plantation est rectangulaire
      N = (max (D0$xx) + 2) * (max (D0$yy) + 2)
      # Création du data.frame "d'accueil"
      D<-
\text{matrix} (c (rep (NA, N), rep (NA, N), (1:N), rep (NA, N), (rep (0: (max (D0$yy)+1)), (max (D0$yy)+1)
xx +2 )), rep (NA, N), re
 (0, N), rep(NA, N), rep(NA, N), rep(0, N), rep(0, N), rep(0, N), rep(0, N), byrow =
F, nrow=N, ncol=18)
      colnames(D)<-
c(names(D0), 'est.1.5.c30', 'est.1.5.c40', 'est.4.5.c30', 'est.4.5.c40', 'volume
 .cat.A','volume.cat.B','volume.cat.C','volume.cat.D')
      D<-as.data.frame(D)
       # Calcul de la coordonnée xx de chaque individu pour avoir le numéro
d'individu qui fait un balayage vertical par le bas
      for (x in 0: (max(D0\$xx)+1))
       {
             D[D$ind==(x*(max(D0$yy)+2)+1):((x+1)*(max(D0$yy)+2)),4]<-x
       # Report des données connues dans le data.frame (sauf du numéro
d'individu)
       # Extraction des coordonnées des arbres existants
      XY \leftarrow D0[, c(4, 5)]
      for (i in 1:nrow(XY))
             # Report des données dans le nouveau data.frame
             D[D$xx==XY[i,1] & D$yy==XY[i,2],c(1,2,4:10)] < -D0[D0$xx==XY[i,1] & D$yy==XY[i,1] & D$yy=XY[i,1] & 
D0$yy==XY[i,2],c(1,2,4:10)]
     }
      return(D)
                                                      Fonction pour estimer les circonférences à 30 et 40 ans
Est.Circ<-function(D, c.min, c.max, coef.def.met=5)</pre>
       # Calcul des projections de la circonférence à 30 et 40 ans + Défilement
métrique de la circonférence
       # Remplissage des colonnes 11 à 14
       # INPUT :
       # D : le data.frame de la parcelle rectangulaire
       # c.min : année de la mesure de circonférence de la colonne 6 (hauteur de
la mesure : 1,30m)
      # c.max : année de la mesure de circonférence de la colonne 10 (hauteur
de la mesure : 1,30m)
       # ce sont les deux mesures les plus éloignées
       # coef.def.met : coefficient de défilement métrique (en cm par m)
```

```
# OUTPUT :
  # D : data.frame avec les informations individus + les estimations à 30
et 40 ans
  # Remarque : les circonférences sont en mm
 c1.3.30<-c() # accueillera les circonférences à 30 ans pour une hauteur
de 1.30m
 c1.3.40<-c() # accueillera les circonférences à 40 ans pour une hauteur
de 1.30m
 for (x in 0:max(D$xx))
    for (y in 0:max(D$yy))
      if (is.finite(D[D$xx==x & D$yy==y,10])==T & ((D[D$xx==x &
D$yy==y,10])>0) #
      {
        # Calcul coefficient projection linéaire
        # Coefficient directeur de la droite
        c.dir<-(D[D$xx==x & D$yy==y, 10]-D[D$xx==x & D$yy==y, 6])/(c.max-
c.min)
        # Ordonnée à l'origine
        o.orig<-D[D$xx==x & D$yy==y,10]-c.dir*c.max
        # Calcul des projections de la circonférence à 1,3m à 30 et 40 ans
        c1.3.30<-round(c.dir*30+o.orig,digits=2)
        c1.3.40 \leftarrow round(c.dir*40+o.orig,digits=2)
        # Estimation de la circonférence à 1,5m à 30 et 40 ans avec le
défilement
        D[D$xx==x & D$yy==y,11]<-round((c1.3.30-
0.2*coef.def.met*10),digits=2)
        D[D$xx==x & D$yy==y, 12]<-round((c1.3.40-
0.2*coef.def.met*10),digits=2)
        # Estimation de la circonférence à 4.5m à 30 et 40 ans
        if ( ((D[D$xx==x & D$yy==y,11]) > (3*coef.def.met*10)) &
((D[D$xx==x & D$yy==y,12]) > (3*coef.def.met*10)))
          D[D$xx==x & D$yy==y,13]<-round(D[D$xx==x & D$yy==y,11]-
3*coef.def.met*10,digits=2)
          D[D$xx==x & D$yy==y,14]<-round(D[D$xx==x & D$yy==y,12]-
3*coef.def.met*10,digits=2)
      }
    }
  }
  return (D)
}
                 Fonction pour calculer les volumes de bois par catégorie
Vol.Bois.Cat<-function()</pre>
  for (x in 0:max(D$xx))
    for (y in 0:max(D$yy))
      if (is.finite(D[D$xx==x & D$yy==y,14])==T & is.finite(D[D$xx==x &
D$yy==y, 12]))
      {
        # Calcul du volume des billes
        Vol.bille.1<-round((3*(D[D$xx==x &
D$yy==y,12]/1000)^2/(4*pi)),digits=2)
        Vol.bille.2<-round((3*(D[D$xx==x &
```

D\$yy==y,14]/1000)^2/(4*pi)),digits=2)

```
# Détermination de la catégorie de la première bille
        if (D[D$xx==x & D$yy==y,12] >= 1100) # Si diamètre sup à 35 cm
          if (D[D$xx==x & D$yy==y,12] >= 1420) # Si diamètre sup à 45 cm
            if (D[D$xx==x & D$yy==y,12] >= 1570) # Si diamètre sup à 50 cm
             D[D$xx==x & D$yy==y,15]<-Vol.bille.1 # Diamètre sup à 50 cm
            }
            else
              D[D$xx==x \& D$yy==y, 16] <-Vol.bille.1 # Diamètre entre 45 et
50 cm
            }
          }
          else
            D[D$xx==x & D$yy==y,17]<-Vol.bille.1 # Diamètre entre 35 et 45
cm
        }
        else
          D[D$xx==x \& D$yy==y,18]<-Vol.bille.1 # Diamètre inf à 35 cm
        # Détermination de la catégorie de la seconde bille
        if (D[D$xx==x & D$yy==y,12] >= 1100) # Si diamètre sup à 35 cm
          if (D[D$xx==x & D$yy==y,12] >= 1420) # Si diamètre sup à 45 cm
            if (D[D$xx==x & D$yy==y,12] >= 1570) # Si diamètre sup à 50 cm
              D[D$xx==x & D$yy==y,15]<-D[D$xx==x & D$yy==y,15]+Vol.bille.2
# Diamètre sup à 50 cm
            }
            else
              D[D$xx==x & D$yy==y,16]<-D[D$xx==x & D$yy==y,16]+Vol.bille.2
# Diamètre entre 45 et 50 cm
            }
          }
          else
            D[D$xx==x & D$yy==y,17]<-D[D$xx==x & D$yy==y,17]+Vol.bille.2 #
Diamètre entre 35 et 45 cm
          }
        }
        else
          D[D$xx==x & D$yy==y,18]<-D[D$xx==x & D$yy==y,18]+Vol.bille.2 #
Diamètre inf à 35 cm
        1
      }
    }
  }
 return (D)
}
```

Annexe 2 : Fonctions pour faire des vérifications sur les données

Fonction pour vérifier la répartition des individus par catégorie de bois

```
# Calcul du nombre d'individus donnant du bois dans chacune des catégories
ind.in.Cat<-function(z)</pre>
  # INPUT :
  # z : un data.frame représentant une parcelle
  # OUTPUT :
  # matrice : première ligne le nombre d'individus par catégorie + le
nombre d'individu donnant du bois
               seconde ligne le pourcentage d'individus que cela représente
par rapport à la totalité des arbres
  NVA < -length(which(z[,15]>0))
  NVB < -length (which (z[,16]>0))
  NVC \leftarrow length (which (z[,17]>0))
  NVD < -length (which (z[,18]>0))
  Total.plant<-length(which(is.finite(z[,1])))</pre>
  Total.contrib<-Total.plant-length(which(is.finite(z[,1]) & z[,15]==0 &
z[,16]==0 & z[,17]==0 & z[,18]==0))
  Num<-
matrix(c(NVA,NVB,NVC,NVD,Total.contrib,round(c(NVA/Total.plant*100,NVB/Tota
1.plant*100, NVC/Total.plant*100, NVD/Total.plant*100, Total.contrib/Total.pla
nt*100))), nrow=2, ncol=5, byrow=TRUE)
  colnames(Num)<-c("Cat.A", "Cat.B", "Cat.C", "Cat.D", "Total")</pre>
  rownames (Num) <-c ("Nb", "%")
  return (Num)
}
                      Fonction pour déterminer la durée d'élagage
stop.elagage<-
```

```
function(z, h.min, h.max, lim.an=40, lim.pourc=0.80, y.lim=90, hauteur=10, x.lim=3
0)
{
  # Si non adapté : calcul du nombre d'année pour avoir 80% des arbres
élaqués à 6m (donc d'une hauteur de 10m)
  # Possibilité de choisir le critère d'arrêt soit sur l'année, soit sur le
pourcentage d'élaqué voulu
 # On ne s'intéresse seulement aux arbres dont le diamètre dépassera les
35 cm à 40 ans
  # INPUT :
  # z : data.frame du style de D (18 colonnes,...)
  # h.min : année de la première mesure de hauteur (colonne 7)
  # h.man : année de la deuxième mesure de hauteur (colonne 9)
  # lim.an : nombre d'années maximales d'élagage (critère d'arrêt 1)
  # lim.pourc : pourcentage d'élagage désiré (critère d'arrêt 2)
  # hauteur : hauteur totale voulue (10m->6m d'élagué / 8,5m->5m d'élagué)
  # y.lim : forcer la valeur max de l'axe des ordonnées (y)
  # x.lim : forcer la valeur max de l'axe des abscisses (x)
  # OUTPUT :
  # un histogramme et une phrase traduisant le résultat
 c.dir<-c()
 o.orig<-c()
 num.ind<-c()
 n<-0 # le nombre d'ind dont on peut projeter la hauteur et qui sont
"intéressant" à élaquer (diamètre final>35cm)
  for (i in 1:nrow(z))
```

```
# Sélection des individus avec potentiels
    if (is.finite(z[i,7]) & is.finite(z[i,12]) & z[i,12] >= 1100) # si h5
existant et si l'arbre atteindra potentiellement un diamètre de 35 cm
    -{
      n<-n+1
      # Mémoire de l'individu
      num.ind<-c(num.ind, z[i, 3])</pre>
      # Calcul coefficient projection linéaire
      # Coefficient directeur de la droite
      c.dir < -round(c(c.dir,(z[i,9]-z[i,7])/(h.max-h.min)),digits=3)
      # Ordonnée à l'origine
      o.orig<-round(c(o.orig, z[i, 9]-c.dir[n]*h.max), digits=3)</pre>
    }
  }
  if (length(num.ind)>0)
      # Préparation d'un data.frame
    info.ind<-matrix(NA, nrow=n, ncol=18, byrow=TRUE)
    colnames(info.ind)<-names(z)</pre>
    info.ind<-as.data.frame(info.ind)
    # Sélection des données des individus avec potentiel
    for (i in 1:n)
      info.ind[i,]<-subset(z,z$ind==num.ind[i])</pre>
    # Initialisation
    i<-0
    pourc.elag<-0
    # Calcul du pourcentage d'élagage selon l'année
    while (pourc.elag<lim.pourc & i<lim.an)</pre>
      i<-i+1
      H<-c.dir*i+o.oriq
      pourc.elag<-round(length(which(H>hauteur))/n,digits=2)
    # Histogramme de distribution en hauteur à i ans
    hist (H, freq=T, breaks=seq (0, x.lim, by=0.5), ylim=c (0, y.lim),
        main = paste("Histogramme de la hauteur totale à ",i,"ans"),
sub=paste(pourc.elag*100,"% des arbres ayant du potentiel sont élagués
sur", 0.6*hauteur, "m"),
        xlab="Hauteur totale",ylab="Nombre d'arbres") #Histogramme de la
hauteur à i ans
    abline(v=hauteur,col="red",lwd=2,lty=2)
    rug(jitter(H)) # Affiche les valeurs des attributs, les traits plus
épais représentent plusieurs fois la même valeur
    legend (x=20, y=30, legend=c ("Objectif"), col=c ("red"),
               lty=c(2,1,1), lwd=c(2,3,2), cex=1, box.lty=0)
    return(paste("Au bout de",i, "ans, ", pourc.elag*100, "% des arbres avec
potentiel sont élaqués sur", 0.6*hauteur, "m,
soit",floor(n*pourc.elag),'arbres sur ',n,"(total
parcelle=",nrow(z),'arbres)'))
  }
  else
    return("il n'y a aucun arbre avec potentiel")
  1
}
```

Fonction pour calculer les volumes totaux de bois dans chaque catégorie

```
sum.vol.cat<-function(z)</pre>
  Vol_Cat<-matrix(NA, nrow = 1, ncol = 5, byrow = T)</pre>
  Vol Cat[1,1:5]<-</pre>
c(sum(z[,15]), sum(z[,16]), sum(z[,17]), sum(z[,18]), sum(z[,15:18]))
  return(Vol Cat)
}
  Fonction pour calculer les pourcentages des catégories par rapport à la quantité de bois totale
pourc.vol.cat<-function(z)</pre>
{
  Pourc Cat<-matrix (NA, nrow = 1, ncol = 5, byrow = T)
  Pourc_Cat[1,1:5]<-
round(c(sum(z[,15])*100/sum(z[,15:18]),sum(z[,16])*100/sum(z[,15:18]),sum(z[,15:18]))
[,17])*100/sum(z[,15:18]),
sum(z[,18])*100/sum(z[,15:18]), sum(z[,15:18])*100/sum(z[,15:18])), digits=2)
  return(Pourc Cat)
                   Fonction pour associer les deux fonctions précédentes
Sum.Pourc.Vol.Cat<-function(z)</pre>
  M \leftarrow matrix(c(sum.vol.cat(z), pourc.vol.cat(z)), nrow = 2, ncol = 5, byrow =
T)
  colnames(M) <- c("Vol.Cat.A", "Vol.Cat.B", "Vol.Cat.C", "Vol.Cat.D", "Total")</pre>
  row.names(M) <- c("Vol.m3", "Pourcentage")</pre>
  return (M)
```

}

Annexe 3 : Fonctions pour réaliser les tirages aléatoires

Fonction pour créer un tirage aléatoire entre deux plants, balayage horizontal, premier individu

```
samplech1<-function(z)</pre>
{
  # Détermination du max en x (colonnes) et en y (lignes)
  Mx \leftarrow floor(max(as.numeric(D$xx))/2)-1
  My<-max(as.numeric(D$yy))-2
  ech<-c()
  for (x in 1:Mx)
    for (y in 1:My)
      if (is.finite(D[D$xx==2*x-1 & D$yy==y,6))==T & is.finite(D[D$xx==2*x &
D$yy==y, 6])==T & D[D$xx==2*x-1 & D$yy==y, 1]!=D[D$xx==2*x & D$yy==y, 1])
        # Tirage aléatoire d'un des deux arbres (un seul individu)
        ech<-c(ech, sample(c(D[D$xx==2*x-1 & D$yy==y,3],D[D$xx==2*x & 
D$yy==y,3]),1,replace=F))
    }
  }
  return (ech)
1
```

Fonction pour créer un tirage aléatoire entre deux plants, balayage horizontal, second individu

```
samplech2<-function(z)</pre>
  # Détermination du max en x (colonnes) et en y (lignes)
 Mx \leftarrow floor(max(as.numeric(D$xx))/2)-1
 My<-max(as.numeric(D$yy))-2
  ech<-c()
  for (x in 1:Mx)
    for (y in 1:My)
      if( is.finite(D[D$xx==2*x & D$yy==y,6])==T & is.finite(D[D$xx==2*x+1
& D$yy==y, 6])==T & D[D$xx==2*x & D$yy==y, 1]!=D[D$xx==2*x+1 & D$yy==y, 1])
        # Tirage aléatoire d'un des deux arbres (un seul individu)
        ech<-c(ech, sample(c(D[D$xx==2*x & D$yy==y,3],D[D$xx==2*x+1 &
D$yy==y,3]),1,replace=F))
      1
    }
  }
  return (ech)
}
```

Fonction pour créer un tirage aléatoire entre deux plants, balayage vertical, premier individu

```
samplecv1<-function(z)
{
    # Détermination du max en x (colonnes) et en y (lignes)
    Mx<-max(as.numeric(D$xx))-2
    My<-floor(max(as.numeric(D$yy))/2)-1
    ech<-c()
    for (x in 1:Mx)</pre>
```

Fonction pour créer un tirage aléatoire entre deux plants, balayage vertical, second individu

```
samplecv2<-function(z)</pre>
  # Détermination du max en x (colonnes) et en y (lignes)
 Mx<-max(as.numeric(D$xx))-2
 My<-floor(max(as.numeric(D$yy))/2)-1
  ech<-c()
  for (x in 1:Mx)
    for (y in 1:My)
      if(is.finite(D[D$xx==x & D$yy==2*y,6])==T & is.finite(D[D$xx==x &
D$yy==2*y+1,6])==T & D[D$xx==x & D$yy==2*y,1]!=D[D$xx==x & D$yy==2*y+1,1])
      {
        # Tirage aléatoire d'un des deux arbres (un seul individu)
        ech<-c(ech, sample(c(D[D$xx==x & D$yy==2*y,3],D[D$xx==x &
D$yy==2*y+1,3]),1,replace=F))
      }
    }
  }
  return (ech)
}
```

Fonction pour créer un tirage aléatoire entre deux plants, balayage diagonal descendant, premier individu

```
}
return(ech)
```

Fonction pour créer un tirage aléatoire entre deux plants, balayage diagonal descendant, second individu

```
samplecdd2<-function(z)</pre>
{
  # Détermination du max en x (colonnes) et en y (lignes)
 Mx < -floor(max(as.numeric(D$xx))/2)-2
 My<-max(as.numeric(D$yy))-2
 ech<-c()
 for (x in 0:Mx)
    for (y in 1:My)
      if (is.finite(D[D$xx==2*x+1 & D$yy==y,6])==T &
is.finite(D[D$xx==2*x+2 & D$yy==y-1,6])==T & D[D$xx==2*x+1 & D
D$yy==y,1]!=D[D$xx==2*x+2 & D$yy==y-1,1])
      {
        # Tirage aléatoire d'un des deux arbres (un seul individu)
        ech<-c(ech, sample(c(D[D$xx==2*x+1 & D$yy==y,3],D[D$xx==2*x+2 &
D$yy==y-1,3]),1,replace=F))
    }
  }
  return (ech)
}
```

Fonction pour créer un tirage aléatoire entre deux plants, balayage diagonal ascendant, second individu

```
samplecda1<-function(z)</pre>
  # Détermination du max en x (colonnes) et en y (lignes)
 Mx<-floor(max(as.numeric(D$xx))/2)-1</pre>
 My<-max(as.numeric(D$yy))-3
  ech<-c()
  for (x in 0:Mx)
    for (y in 0:My)
      if (is.finite(D[D$xx==2*x & D$yy==y+1,6])==T &
is.finite(D[D$xx==2*x+1 & D$yy==y,6])==T & D[D$xx==2*x &
D$yy==y+1,1]!=D[D$xx==2*x+1 & D$yy==y,1])
        # Tirage aléatoire d'un des deux arbres (un seul individu)
        ech<-c(ech, sample(c(D[D$xx==2*x & D$yy==y+1,3], D[D$xx==2*x+1 &
D$yy==y,3]),1,replace=F))
    }
  }
  return (ech)
```

48

Fonction pour créer un tirage aléatoire entre deux plants, balayage diagonal ascendant, second individu

```
samplecda2<-function(z)</pre>
  # Détermination du max en x (colonnes) et en y (lignes)
  Mx<-floor(max(as.numeric(D$xx))/2)-1</pre>
  My<-max(as.numeric(D$yy))-3
  ech<-c()
  for (x in 0:Mx)
    for (y in 0:My)
      if (is.finite(D[D$xx==2*x & D$yy==y,6])==T & is.finite(D[D$xx==2*x+1
& D$yy==y+1,6])==T & D[D$xx==2*x & D$yy==y,1]!=D[D$xx==2*x+1 &
D$yy==y+1,1])
        # Tirage aléatoire d'un des deux arbres (un seul individu)
        ech<-c(ech, sample(c(D[D$xx==2*x & D$yy==y,3],D[D$xx==2*x+1 &
D$yy==y+1,3]),1,replace=F))
    }
  }
  return (ech)
```

Annexe 4 : Fonctions de manipulations de données

Fonction pour récupérer les données liées aux plants tirés au sort et calculer les volumes et pourcentages associés

```
data.tirage<-function(z)</pre>
  # INPUT :
  # z : un échantillon de nb.sample tirages
  # OUTPUT :
  # Data : les données complètes des plantation de chaque tirage
  # Vol : les volumes par catégorie de chaque tirage
  # Pourc : les pourcentages par catégorie de chaque tirage
  Tirage<-list()
  Vol. Tirage \leftarrow matrix (NA, nrow = 5, ncol = ncol(z))
  row.names(Vol.Tirage) <- c("Cat.A", "Cat.B", "Cat.C", "Cat.D", "Total")</pre>
  Pourc. Tirage <- matrix (NA, nrow = 5, ncol = ncol(z))
  row.names(Pourc.Tirage) <- c("Cat.A", "Cat.B", "Cat.C", "Cat.D", "Total")</pre>
  for (i in 1:nb.sample)
    Tirage[[i]]<-D[z[,i],]
    Vol<-sum.vol.cat(Tirage[[i]])</pre>
    Pourc<-pourc.vol.cat(Tirage[[i]])</pre>
    Vol.Tirage[,i]<-Vol</pre>
    Pourc.Tirage[,i]<-Pourc</pre>
  }
  transpo.Vol.Tirage<-t(Vol.Tirage)
  Transpo. Vol. Tirage <- as. data. frame (transpo. Vol. Tirage)
  transpo.Pourc.Tirage<-t(Pourc.Tirage)</pre>
  Transpo.Pourc.Tirage<-as.data.frame(transpo.Pourc.Tirage)</pre>
return(list(Data=Tirage, Vol=Transpo.Vol.Tirage, Pourc=Transpo.Pourc.Tirage))
}
                  Fonction pour rapporter les résultats obtenus à n arbres
Bois.n.plants<-function(z,N,n)</pre>
  # INPUT :
  # z : data.frame avec les volumes par catégorie
  # N : le nombre de plants correspondant aux mesures de z
  # n : le nombre d'arbres voulu
  Z<-round(z*n/N, digits=2)</pre>
  return(Z)
```

}

Annexe 5: Fonction graphique

Fonction pour représenter les volumes d'une catégorie des résultats compilés

```
histo<-function(z,V.min,V.max,Freq=FALSE,tt=NA,xtt=NA,ytt=NA,x.min=0,x.max=90,pas)
{
    #INPUT:
        # z : un vecteur contenant des volumes d'une même catégorie
        # V.min : volume si sélection des pires plants
        # V.max : volume si sélection des meilleurs plants
hist(z,freq=Freq,breaks=seq(x.min,x.max,by=pas),
        main = tt,sub=subtitle,xlab=xtt,ylab = ytt)
abline(v=V.max,col="blue",lwd=2,lty=2)
abline(v=V.min,col="red",lwd=2,lty=2)
abline(v=mean(z),col="green3",lwd=3,lty=3)
rug(jitter(z))
}</pre>
```

Annexe 6 : Fonctions préparations pour les tableaux

Fonction pour stocker au sein d'un même élément les volumes de tous les tirages

```
Vol.all.Tirages<-function()</pre>
  # Retourne une matrice comportant les volumes de bois de chaque catégorie
(+ total)
  # pour tous les tirages de toutes les directions
  # La dernière colonne garde l'information de la direction du tirage
 M<-matrix (data=0, ncol=6, nrow=8*nb.sample)
 M<-as.data.frame(M)
 M[1:nb.sample, 6]="Horiz1"
 M[1:nb.sample, 1:5] <- as.matrix (Vol50.Tirage.Horiz1)
 M[(nb.sample+1):(2*nb.sample),6]="Horiz2"
 M[(nb.sample+1):(2*nb.sample),1:5]<-as.matrix(Vol50.Tirage.Horiz2)
 M[(2*nb.sample+1):(3*nb.sample),6]="Verti1"
 M[(2*nb.sample+1):(3*nb.sample),1:5]<-as.matrix(Vol50.Tirage.Verti1)
 M[(3*nb.sample+1):(4*nb.sample),6]="Verti2"
 M[(3*nb.sample+1):(4*nb.sample),1:5]<-as.matrix(Vol50.Tirage.Verti2)
 M[(4*nb.sample+1):(5*nb.sample),6]="DiagD1"
 M[(4*nb.sample+1):(5*nb.sample),1:5] < -as.matrix(Vol50.Tirage.Diag.Desc1)
 M[(5*nb.sample+1):(6*nb.sample),6]="DiagD2"
 M[(5*nb.sample+1):(6*nb.sample),1:5] < -as.matrix(Vol50.Tirage.Diag.Desc2)
 M[(6*nb.sample+1):(7*nb.sample),6]="DiagA1"
 M[(6*nb.sample+1):(7*nb.sample),1:5] < -as.matrix(Vol50.Tirage.Diag.Asc1)
 M[(7*nb.sample+1):(8*nb.sample),6]="DiagA2"
 M[(7*nb.sample+1):(8*nb.sample),1:5] < -as.matrix(Vol50.Tirage.Diag.Asc2)
  colnames(M)<-c("VA", "VB", "VC", "VD", "VTotal", "Selection")</pre>
 M$Selection<-as.factor(M$Selection)
  return (M)
}
                           Fonction pour calculer un écart
Plage <- function(x)</pre>
  ecart<-c()
 for (i in 1:nrow(x))
    ecart<-c(ecart, abs(x[i,2]-x[i,1]))
  }
  return(round(ecart, digits=1))
}
                               Fonction pour stocker
tab1<-function(z,h.min,h.max)
  # INPUT
  # z : data.frame du style de D (18 colonnes,...)
  # h.min : année de la première mesure de hauteur (colonne 7)
  # h.man : année de la deuxième mesure de hauteur (colonne 9)
  # OUTPUT
  # D.moyen : diamètre moyen des arbres sélectionné
  # nb.pot.moyen :
  # D.pot.moyen :
  P<-c()
  nb.pot<-c()
  D.moyen < -c()
  D.pot.moyen<-c()
```

```
for (i in 1:nb.sample)
    Dat<-z$Data[[i]] # extraction du tirage i</pre>
    Dat.pot<-subset(Dat,Dat$proj.1.5.c40>1100) # données des plants qui
atteindront 35 cm de diamètre
    C.moyen<-mean(Dat[,8],na.rm = TRUE) # circonférence moyenne à 10 ou 11
ans
    D.moyen<-c(D.moyen,round(C.moyen/pi/10,digits=1)) # diamètre moyen à 10
ou 11 ans
    C.pot.moyen<-mean(Dat.pot[,8]) # circonférence moyenne à 10 ou 11 ans</pre>
des potentiels
    D.pot.moyen<-c(D.pot.moyen, round(C.pot.moyen/pi/10, digits=1)) #</pre>
circonférence moyenne à 10 ou 11 ans des potentiels
    nb.pot<-c(nb.pot, nrow(Dat.pot)) # nombre de potentiel</pre>
  nb.pot.moyen<-floor(mean(nb.pot))</pre>
  return(list(D.moyen, nb.pot, D.pot.moyen))
xlsx.addTitle<-function(sheet, rowIndex, title, titleStyle)
  rows <-createRow(sheet,rowIndex=rowIndex)</pre>
  sheetTitle <-createCell(rows, colIndex=1)</pre>
  setCellValue(sheetTitle[[1,1]], title)
  setCellStyle(sheetTitle[[1,1]], titleStyle)
}
```

Annexe 7 : Code d'analyse

```
# package nécessaire : ggplot2, xlsx
library(ggplot2) # pour graphique
library(xlsx) # pour sortie excel
# il est nécessaire de faire tourner les fonctions du fichier "O Fonctions"
avant de commencer
# si une sauvegarde des volumes compilés a été faite, il est inutile de
relancer la partie tirage (ni la partie compilation)
                                  Introduction
# Les graphiques seront stockés dans un format pdf
PARCELLE<-"Nom de la plantation" #### A MODIFIER ####
pdf (paste ("Graphique", PARCELLE, ".pdf"))
# Sous titre utilisé pour la partie tirage (nom de la parcelle)
subtitle<- (PARCELLE)
# Lecture du fichier cible
D0 <- read.csv2 (paste(PARCELLE, "pret 1.csv"), header = TRUE, sep = ';', dec
= ', ')
# Représentation visuelle du fichier initial
str(D0)
nb.arbres<-XX # nombre d'arbres pour la sortie (usuellement 50 plants)
h.min<-XX # année de la première mesure de hauteur = colonne 7
h.max<-XX # année de la seconde mesure de hauteur = colonne 9
c.min<-XX # année de la première mesure de circonférence = colonne 6
c.max<-XX # année de la dernière mesure de circonférence = colonne 10
#### CREATION DU DATA.FRAME ####
# Parcelle rectangulaire, intégration des individus manquants
D<-Plantation.Rect.Donnees()
# Calcul des projections de la circonférence à 30 et 40 ans + Défilement
métrique de la circonférence
# colonnes 11, 12, 13 et 14
# c.min = année de la colonne 6, c.max = année de la colonne 10
D<-Est.Circ(D,c.min,c.max)</pre>
# Convertir les hauteurs en mètre
D[,7] \leftarrow D[,7] * 0.01  # hauteur colonne 7 en m
D[,9] \leftarrow D[,9] * 0.01  # hauteur colonne 7 en m
# Calcul des volumes de bois par catégorie
# Remplissage des colonnes 15, 16, 17 et 18
D<-Vol.Bois.Cat()
# Représentation visuelle du fichier créé
str(D)
# Transformation en facteur des variables non quantitative
D$cl <- as.factor(D$cl)</pre>
D$bl <- as.factor(D$bl)
D$ind <- as.factor(D$ind)
D$xx <- as.factor(D$xx)
```

```
D$yy <- as.factor(D$yy)
# Résumé statistique (moyenne, max, min, médiane,.)
summary(D)
                          Représentation de la plantation
# Sélection des arbres dont la circonférence à 10 est supérieure ou égale à
0
# la couleur représente la hauteur
# le point représente le diamètre
D[1,9]<-14.5 # Rajout d'un arbre ayant une hauteur importante pour faire
l'échelle entre toutes les parcelles
D[1,8] < -21*pi*10 # et dont le diamètre est grand
D1 <- subset(D,D[,8] \geq= 0)
D1$c10<-round((D1$c10)/(pi*10),digits=1)
names(D1)[match("c10", names(D1))] <-'d10'</pre>
D1[c(which(is.finite(D1$h10)==F)),9]<-0
print(ggplot(D1, aes(x=xx, y=yy, color=h10, size=d10)) + geom point() +
scale color gradientn(colours=rainbow(6)))
D[1,9]<-NA
D[1,8]<-NA
# 1'individu échellon se situe à la position (0,0), en bas à gauche
                              Quelques vérifications
# les individus donnant du bois de catégorie A,B,C,ou D
ind.in.Cat(D)
# Première ligne : nombre d'individu contribuant aux catégorie de bois +
Total
# Seconde ligne : pourcentage d'individu contribuant aux catégorie par
rapport au nombre d'arbres de la parcelle
# Calcul du nombre d'année d'élagage
\# h.min = année mesure colonne 7, h.max = année mesure colonne 9
stop.elagage(D,h.min,h.max,lim.an=10,lim.pourc=0.70) # pour avoir le taux
d'élagage à 10 ans
stop.elagage(D,h.min,h.max,lim.an=20,lim.pourc=0.70) # pour avoir l'année
d'élagage pour obtenir 70% d'élagué (avec une limite de 20 ans)
stop.elagage(D,h.min,h.max,lim.an=20,lim.pourc=0.80) # pour avoir l'année
d'élagage pour obtenir 80% d'élagué (avec une limite de 20 ans)
```

dev.off() # arrêt du pdf

Annexe 8 : Code pour la sélection des pires et des meilleurs plants

```
# On va créer 8 estimations=2*4 où 4 est le nombre de directions que l'on
prend, ainsi on aura 8 data.frame
# horizontal, vertical, diagonal descendant, diagonal ascendant (ler et 2nd
individu)
```

Sélection horizontale, premier individu

```
# MEILLEUR PLANT
# Formation des couples horizontaux en commençant par le 1er individu et
sélection du MEILLEUR plant dans chaque couple
# Initialisation du vecteur de sortie
temoin max2.horiz1<-c()
# Détermination du max en x (colonnes) et en y (lignes)
Mx \leftarrow floor(max(as.numeric(D$xx))/2)-1
My<-max(as.numeric(D$yy))-2
# Balayage pour la sélection des meilleurs arbres
for (x in 1:Mx)
  for (y in 1:My)
    if (is.finite(D[D$xx==2*x-1 & D$yy==y,6))==T & is.finite(D[D$xx==2*x &
on a un couple (pas de NA)
      if (D[D$xx==2*x-1 & D$yy==y,6] >= D[D$xx==2*x & D$yy==y,6])
       temoin max2.horiz1<-c(temoin max2.horiz1,c(D[D$xx==2*x-1 &
D$yy==y,3])) # Sélection du premier arbre
      if (D[D$xx==2*x-1 & D$yy==y, 6] < D[D$xx==2*x & D$yy==y, 6])
       temoin max2.horiz1<-c(temoin max2.horiz1,c(D[D$xx==2*x &
D$yy==y,3])) # Sélection du second arbre
       }
      }
    temoin_max2.horiz1
}
# On transforme en dataframe en faisant le lien avec D
Ref max2.Horiz1<-D[temoin max2.horiz1,]</pre>
# Quelques statistiques descriptives
summary(Ref max2.Horiz1[,6:12])
# Volume de Bois par Catégorie à 40 ans
# Matrice réunissant les pourcentages et les volumes en m3
Vol_Max40.Horiz1<-Sum.Pourc.Vol.Cat(Ref_max2.Horiz1)</pre>
# pour 50 arbres
Vol50.Max.Horiz1<-
Bois.n.plants(Vol Max40.Horiz1[1,], N=nrow(Ref max2.Horiz1), n=nb.arbres)
# PIRE PLANT
# Formation des couples horizontaux en commençant par le 1er individu et
sélection du PIRE plant dans chaque couple
```

```
# Initialisation du vecteur de sortie
temoin min2.horiz1<-c()
# Détermination du max en x (colonnes) et en y (lignes)
Mx \leftarrow floor(max(as.numeric(D$xx))/2)-1
My<-max(as.numeric(D$yy))-2
# Balayage pour la sélection des pires arbres
for (x in 1:Mx)
  for (y in 1:My)
    if (is.finite(D[D$xx==2*x-1 & D$yy==y,6])==T & is.finite(D[D$xx==2*x &
D$yy==y,6])==T & D[D$xx==2*x-1 & D$yy==y,1]!=D[D$xx==2*x & D$yy==y,1]) # Si
on a un couple (pas de NA)
      if (D[D$xx==2*x-1 \& D$yy==y,6]) >= D[D$xx==2*x \& D$yy==y,6])
        temoin min2.horiz1<-c(temoin min2.horiz1,c(D[D$xx==2*x &
D$yy==y,3]))
      if (D[D$xx==2*x-1 & D$yy==y,6] < D[D$xx==2*x & D$yy==y,6])
        temoin min2.horiz1<-c(temoin min2.horiz1,c(D[D$xx==2*x-1 \&
D$yy==y, 3]))
      }
    temoin_min2.horiz1
  }
}
# On transforme en dataframe en faisant le lien avec D
Ref min2.Horiz1<-D[temoin min2.horiz1,]</pre>
# Quelques statistiques descriptives
summary(Ref min2.Horiz1[,6:12])
# Volume de Bois par Catégorie à 40 ans
# Matrice réunissant les pourcentages et les volumes en m3
Vol Min40.Horiz1<-Sum.Pourc.Vol.Cat(Ref min2.Horiz1)</pre>
# pour 50 arbres
Vol50.Min.Horiz1<-
Bois.n.plants(Vol Min40.Horiz1[1,], N=nrow(Ref min2.Horiz1), n=nb.arbres)
                        Sélection horizontale, second individu
# MEILLEUR PLANT
# Formation des couples horizontaux commençant par le 2ème individu et
sélection du MEILLEUR plant dans chaque couple
# Intialisation du vecteur de sortie
temoin max2.horiz2<-c()
# Détermination du max en x (colonnes) et en y (lignes)
Mx<-floor(max(as.numeric(D$xx))/2)-1
My<-max(as.numeric(D$yy))-2
# Balayage pour la sélection des meilleurs arbres
for (x in 1:Mx)
```

```
for (y in 1:My)
    if(is.finite(D[D$xx==2*x & D$yy==y,6])==T & is.finite(D[D$xx==2*x+1 & C
D\$yy==y,6])==T \& D[D\$xx==2*x \& D\$yy==y,1]!=D[D\$xx==2*x+1 \& D\$yy==y,1]) \# Si
on a un couple (pas de NA)
    {
      if (D[D$xx==2*x & D$yy==y,6] >= D[D$xx==2*x+1 & D$yy==y,6])
        temoin max2.horiz2<-c(temoin max2.horiz2,c(D[D$xx==2*x &
D$yy==y,3])) # Sélection du premier arbre
      if (D[D$xx==2*x & D$yy==y,6] < D[D$xx==2*x+1 & D$yy==y,6])
        temoin max2.horiz2<-c(temoin max2.horiz2,c(D[D$xx==2*x+1 &
D$yy==y,3])) # Sélection du second arbre
    temoin max2.horiz2
  }
}
# On transforme en dataframe en faisant le lien avec D
Ref max2.Horiz2<-D[temoin max2.horiz2,]</pre>
# Quelques statistiques descriptives
summary(Ref max2.Horiz2[,6:12])
# Volume de Bois par Catégorie à 40 ans
# Matrice réunissant les pourcentages et les volumes en m3
Vol Max40.Horiz2<-Sum.Pourc.Vol.Cat(Ref max2.Horiz2)</pre>
# pour 50 arbres
Vol50.Max.Horiz2<-
Bois.n.plants(Vol Max40.Horiz2[1,], N=nrow(Ref max2.Horiz2), n=nb.arbres)
# PIRE PLANT
# Formation des couples horizontaux commençant par le 2ème individu et
sélection du PIRE plant dans chaque couple
# Initialisation du vecteur de sortie
temoin min2.horiz2<-c()
# Détermination du max en x (colonnes) et en y (lignes)
Mx \leftarrow floor(max(as.numeric(D$xx))/2)-1
My<-max(as.numeric(D$yy))-2
# Balayage pour la sélection des pires arbres
for (x in 1:Mx)
{
  for (y in 1:My)
    if(is.finite(D[D$xx==2*x & D$yy==y,6])==T & is.finite(D[D$xx==2*x+1 & C
D$yy==y,6])==T & D[D$xx==2*x & D$yy==y,1]!=D[D$xx==2*x+1 & D$yy==y,1])
      if (D[D$xx==2*x & D$yy==y, 6] >= D[D$xx==2*x+1 & D$yy==y, 6])
        temoin min2.horiz2<-c(temoin min2.horiz2,c(D[D$xx==2*x+1 &
D$yy==y,3]))
      if (D[D$xx==2*x & D$yy==y,6] < D[D$xx==2*x+1 & D$yy==y,6])
```

```
temoin min2.horiz2<-c(temoin min2.horiz2,c(D[D$xx==2*x &
D$yy==y,3]))
    temoin min2.horiz2
  }
}
# On transforme en dataframe en faisant le lien avec D
Ref min2.Horiz2<-D[temoin min2.horiz2,]</pre>
# Quelques statistiques descriptives
summary(Ref min2.Horiz2[,6:12])
# Volume de Bois par Catégorie à 40 ans
# Matrice réunissant les pourcentages et les volumes en m3
Vol Min40.Horiz2<-Sum.Pourc.Vol.Cat(Ref min2.Horiz2)
# pour 50 arbres
Vol50.Min.Horiz2<-
Bois.n.plants(Vol Min40.Horiz2[1,], N=nrow(Ref min2.Horiz2), n=nb.arbres)
                         Sélection verticale, premier individu
# MEILLEUR PLANT
# Formation des couples verticaux commençant par le 1er individu et
sélection du meilleur plant dans chaque couple
# Initialisation du vecteur de sortie
temoin max2.verti1<-c()</pre>
# Détermination du max en x (colonnes) et en y (lignes)
Mx<-max(as.numeric(D$xx))-2</pre>
My<-floor(max(as.numeric(D$yy))/2)-1
# Balayage pour la sélection des meilleurs arbres
for (x in 1:Mx)
  for (y in 1:My)
    if (is.finite(D[D$xx==x & D$yy==2*y-1,6])==T & is.finite(D[D$xx==x & B)
D$yy==2*y,6])==T & D[D$xx==x & D$yy==2*y-1,1]!=D[D$xx==x & D$yy==2*y,1])
#si on a un couple (pas de NA)
      if (D[D$xx==x & D$yy==2*y-1,6] >= D[D$xx==x & D$yy==2*y,6])
        temoin max2.verti1<-c(temoin max2.verti1,c(D[D$xx==x & D$yy==2*y-
1,3])) # Sélection du premier arbre
      if (D[D$xx==x & D$yy==2*y-1,6] < D[D$xx==x & D$yy==2*y,6])</pre>
        temoin max2.verti1<-c(temoin max2.verti1,c(D[D$xx==x &
D$yy==2*y,3])) # Sélection du second arbre
      }
    }
    temoin max2.verti1
  1
}
# On transforme en dataframe en faisant le lien avec D
```

```
Ref max2.Verti1<-D[temoin max2.verti1,]</pre>
# Quelques statistiques descriptives
summary(Ref max2.Verti1[,6:12])
# Volume de Bois par Catégorie à 40 ans
# Matrice réunissant les pourcentages et les volumes en m3
Vol Max40.Verti1<-Sum.Pourc.Vol.Cat(Ref max2.Verti1)</pre>
# pour 50 arbres
Vol50.Max.Verti1<-
Bois.n.plants(Vol Max40.Verti1[1,],N=nrow(Ref_max2.Verti1),n=nb.arbres)
# PIRE PLANT
# Formation des couples verticaux en commençant par le 1er individu et
sélection du PIRE plant dans chaque couple
# Initialisation du vecteur de sortie
temoin min2.verti1<-c()
# Détermination du max en x (colonnes) et en y (lignes)
Mx<-max(as.numeric(D$xx))-2
My<-floor(max(as.numeric(D$yy))/2)-1
# Balayage pour la sélection des pires arbres
for (x in 1:Mx)
  for (y in 1:My)
    if(is.finite(D[D$xx==x & D$yy==2*y-1,6])==T & is.finite(D[D$xx==x &
D\$yy==2*y,6])==T & D[D\$xx==x & D\$yy==2*y-1,1]!=D[D\$xx==x & D\$yy==2*y,1])
    {
      if (D[D$xx==x & D$yy==2*y-1,6] >= D[D$xx==x & D$yy==2*y,6])
        temoin min2.verti1<-c(temoin min2.verti1,c(D[D$xx==x &
D$yy==2*y,3]))
      }
      if (D[D$xx==x & D$yy==2*y-1,6] < D[D$xx==x & D$yy==2*y,6])
        temoin min2.verti1<-c(temoin min2.verti1,c(D[D$xx==x & D$yy==2*y-
1,3]))
      }
    }
    temoin min2.verti1
  }
}
# On transforme en dataframe en faisant le lien avec D
Ref min2.Verti1<-D[temoin min2.verti1,]</pre>
# Quelques statistiques descriptives
summary(Ref min2.Verti1[,6:12])
# Volume de Bois par Catégorie à 40 ans
# Matrice réunissant les pourcentages et les volumes en m3
Vol Min40.Verti1<-Sum.Pourc.Vol.Cat(Ref min2.Verti1)</pre>
# pour 50 arbres
Vol50.Min.Verti1<-
Bois.n.plants(Vol Min40.Verti1[1,], N=nrow(Ref min2.Verti1), n=nb.arbres)
```

Sélection verticale, second individu

```
# MEILLEUR PLANT
#Formation des couples verticaux en commençant par le 2ème individu et
sélection du meilleur plant dans chaque couple
# Initialisation du vecteur de sortie
temoin max2.verti2<-c()</pre>
# Détermination du max en x (colonnes) et en y (lignes)
Mx<-max(as.numeric(D$xx))-2</pre>
My<-floor(max(as.numeric(D$yy))/2)-1
# Balayage pour la sélection des meilleurs arbres
for (x in 1:Mx)
  for (y in 1:My)
    if(is.finite(D[D$xx==x & D$yy==2*y,6])==T & is.finite(D[D$xx==x &
D$yy==2*y+1,6])==T & D[D$xx==x & D$yy==2*y,1]!=D[D$xx==x & D$yy==2*y+1,1])
      if (D[D$xx==x & D$yy==2*y,6] >= D[D<math>$xx==x & D$yy==2*y+1,6])
        temoin max2.verti2<-c(temoin max2.verti2,c(D[D$xx==x &
D$yy==2*y,3])) # Sélection du premier arbre
      if (D[D$xx==x & D$yy==2*y,6] < D[D$xx==x & D$yy==2*y+1,6])
        temoin max2.verti2<-c(temoin max2.verti2,c(D[D$xx==x &
D$yy==2*y+1,3])) # Sélection du second arbre
      }
    }
    temoin max2.verti2
  }
}
# On transforme en dataframe en faisant le lien avec D
Ref max2.Verti2<-D[temoin max2.verti2,]</pre>
# Quelques statistiques descriptives
summary(Ref max2.Verti2[,6:12])
# Volume de Bois par Catégorie à 40 ans
# Matrice réunissant les pourcentages et les volumes en m3
Vol Max40.Verti2<-Sum.Pourc.Vol.Cat(Ref max2.Verti2)
# pour 50 arbres
Vol50.Max.Verti2<-
Bois.n.plants(Vol Max40.Verti2[1,], N=nrow(Ref max2.Verti2), n=nb.arbres)
# PIRE PLANT
# Formation des couples verticaux en commençant par le 2ème individu et
sélection du PIRE plant dans chaque couple
# Initialisation du vecteur de sortie
temoin min2.verti2<-c()
# Détermination du max en x (colonnes) et en y (lignes)
Mx<-max(as.numeric(D$xx))-2</pre>
My<-floor(max(as.numeric(D$yy))/2)-1
```

```
# Balayage pour la sélection des pires arbres
for (x in 1:Mx)
  for (y in 1:My)
    if(is.finite(D[D$xx==x & D$yy==2*y,6])==T & is.finite(D[D$xx==x &
D$yy==2*y+1,6])==T & D[D$xx==x & D$yy==2*y,1]!=D[D$xx==x & D$yy==2*y+1,1])
      if (D[D$xx==x & D$yy==2*y,6] >= D[D<math>$xx==x & D$yy==2*y+1,6])
        temoin min2.verti2<-c(temoin min2.verti2,c(D[D$xx==x &
D$yy==2*y+1,3]))
      if (D[D$xx==x & D$yy==2*y,6] < D[D$xx==x & D$yy==2*y+1,6])
        temoin min2.verti2<-c(temoin min2.verti2,c(D[D$xx==x &
D$yy==2*y,3]))
      }
    }
    temoin min2.verti2
  }
}
# On transforme en dataframe en faisant le lien avec D
Ref min2.Verti2<-D[temoin min2.verti2,]</pre>
# Quelques statistiques descriptives
summary(Ref min2.Verti2[,6:12])
# Volume de Bois par Catégorie à 40 ans
# Matrice réunissant les pourcentages et les volumes en m3
Vol Min40.Verti2<-Sum.Pourc.Vol.Cat(Ref min2.Verti2)</pre>
# pour 50 arbres
Vol50.Min.Verti2<-
Bois.n.plants(Vol Min40.Verti2[1,], N=nrow(Ref min2.Verti2), n=nb.arbres)
                   Sélection diagonale descendante, premier individu
# MEILLEUR PLANT
# Formation des couples diagonaux en commençant par le 1er individu et
sélection du meilleur plant dans chaque couple
# Initialisation du vecteur de sortie
temoin max2.diag.desc1<-c()</pre>
# Détermination du max en x (colonnes) et en y (lignes)
Mx \leftarrow floor(max(as.numeric(D$xx))/2)-1
My<-max(as.numeric(D$yy))-2
# Balayage pour la sélection des meilleurs arbres
for (x in 1:Mx)
{
  for (y in 2:My)
    if (is.finite(D[D$xx==2*x-1 & D$yy==y,6])==T & is.finite(D[D$xx==2*x &
D$yy==y-1,6])==T & D[D$xx==2*x-1 & D$yy==y,1]!=D[D$xx==2*x & D$yy==y-1,1])
      if (D[D$xx==2*x-1 & D$yy==y,6] >= D[D$xx==2*x & D$yy==y-1,6])
        temoin max2.diag.desc1<-c(temoin max2.diag.desc1,c(D[D$xx==2*x-1 &
```

```
D$yy==y, 3]))
      if (D[D$xx==2*x-1 & D$yy==y,6] < D[D$xx==2*x & D$yy==y-1,6])
        temoin max2.diag.desc1<-c(temoin max2.diag.desc1,c(D[D$xx==2*x &
D$yy==y-1,3]))
    temoin max2.diag.desc1
  }
}
# On transforme en dataframe en faisant le lien avec D
Ref max2.Diag.Desc1<-D[temoin max2.diag.desc1,]</pre>
# Quelques statistiques descriptives
summary(Ref max2.Diag.Desc1[,6:12])
# Volume de Bois par Catégorie à 40 ans
# Matrice réunissant les pourcentages et les volumes en m3
Vol Max40.Diag.Desc1 <- Sum.Pourc.Vol.Cat (Ref max2.Diag.Desc1)
# pour 50 arbres
Vol50.Max.Diag.Desc1<-
Bois.n.plants(Vol Max40.Diag.Desc1[1,],N=nrow(Ref max2.Diag.Desc1),n=nb.arb
res)
# PIRE PLANT
# Formation des couples diagonaux commençant par le 1er individu et
sélection du PIRE plant dans chaque couple
# Initialisation du vecteur de sortie
temoin min2.diag.desc1<-c()</pre>
# Détermination du max en x (colonnes) et en y (lignes)
Mx < -floor(max(as.numeric(D$xx))/2)-1 # Le nombre maximum de couples
possibles horizontalement
My<-max(as.numeric(D$yy))-2 # Balayage sur toutes les lignes (sauf les 2
lignes fictives)
# Balayage pour la sélection des pires arbres
for (x in 1:Mx)
  for (y in 2:My)
    if (is.finite(D[D$xx==2*x-1 & D$yy==y,6))==T & is.finite(D[D$xx==2*x &
D$yy==y-1,6])==T & D[D$xx==2*x-1 & D$yy==y,1]!=D[D$xx==2*x & D$yy==y-1,1])
    {
      if (D[D$xx==2*x-1 & D$yy==y,6] >= D[D$xx==2*x & D$yy==y-1,6])
        temoin min2.diag.desc1<-c(temoin min2.diag.desc1,c(D[D$xx==2*x &
D$yy==y-1,3]))
      }
      if (D[D$xx==2*x-1 & D$yy==y,6] < D[D$xx==2*x & D$yy==y-1,6])
        temoin min2.diag.desc1<-c(temoin min2.diag.desc1,c(D[D$xx==2*x-1 &
D$yy==y,3]))
      }
    temoin_min2.diag.desc1
```

```
}
# On transforme en dataframe en faisant le lien avec D
Ref min2.Diag.Desc1<-D[temoin min2.diag.desc1,]</pre>
# Quelques statistiques descriptives
summary(Ref min2.Diag.Desc1[,6:12])
# Volume de Bois par Catégorie à 40 ans
# Matrice réunissant les pourcentages et les volumes en m3
Vol Min40.Diag.Desc1<-Sum.Pourc.Vol.Cat(Ref min2.Diag.Desc1)
# pour 50 arbres
Vol50.Min.Diag.Desc1<-
Bois.n.plants(Vol_Min40.Diag.Desc1[1,],N=nrow(Ref min2.Diag.Desc1),n=nb.arb
res)
                   Sélection diagonale descendante, second individu
# MEILLEUR PLANT
# Formation des couples diagonaux en commençant par le 2ème individu et
sélection du meilleur plant dans chaque couple
# Initialisation du vecteur de sortie
temoin max2.diag.desc2<-c()</pre>
# Détermination du max en x (colonnes) et en y (lignes)
Mx<-floor(max(as.numeric(D$xx))/2)-1</pre>
My<-max(as.numeric(D$yy))-2
# Balayage pour la sélection des meilleurs arbres
for (x in 1:Mx)
  for (y in 2:My)
    if (is.finite(D[D$xx==2*x & D$yy==y,6])==T & is.finite(D[D$xx==2*x+1 &
D$yy==y-1,6])==T & D[D$xx==2*x & D$yy==y,1]!=D[D$xx==2*x+1 & D$yy==y-1,1])
      if (D[D$xx==2*x & D$yy==y,6] >= D[D$xx==2*x+1 & D$yy==y-1,6])
        temoin max2.diag.desc2<-c(temoin max2.diag.desc2,c(D[D$xx==2*x &
D$yy==y,3]))
      if (D[D$xx==2*x & D$yy==y,6] < D[D$xx==2*x+1 & D$yy==y-1,6])
        temoin max2.diag.desc2<-c(temoin max2.diag.desc2,c(D[D$xx==2*x+1 &
D$yy==y-1,3]))
      }
    temoin_max2.diag.desc2
  }
}
# On transforme en dataframe en faisant le lien avec D
Ref max2.Diag.Desc2<-D[temoin max2.diag.desc2,]</pre>
# Quelques statistiques descriptives
summary(Ref max2.Diag.Desc2[,6:12])
# Volume de Bois par Catégorie à 40 ans
# Matrice réunissant les pourcentages et les volumes en m3
```

```
Vol Max40.Diag.Desc2<-Sum.Pourc.Vol.Cat(Ref max2.Diag.Desc2)
# pour 50 arbres
Vol50.Max.Diag.Desc2<-
Bois.n.plants(Vol Max40.Diag.Desc2[1,],N=nrow(Ref max2.Diag.Desc2),n=nb.arb
res)
# PIRE PLANT
# Formation des couples diagonaux commençant par le 2ème individu et
sélection du pire plant dans chaque couple
# Initialisation du vecteur de sortie
temoin min2.diag.desc2<-c()</pre>
# Détermination du max en x (colonnes) et en y (lignes)
Mx<-floor(max(as.numeric(D$xx))/2)-1
My<-max(as.numeric(D$yy))-2
# Balayage pour la sélection des pires arbres
for (x in 1:Mx)
  for (y in 2:My)
    if (is.finite(D[D$xx==2*x & D$yy==y,6])==T & is.finite(D[D$xx==2*x+1 & C
D$yy==y-1,6])==T & D[D$xx==2*x & D$yy==y,1]!=D[D$xx==2*x+1 & D$yy==y-1,1])
    {
      if (D[D$xx==2*x & D$yy==y,6] >= D[D$xx==2*x+1 & D$yy==y-1,6])
        temoin min2.diag.desc2<-c(temoin min2.diag.desc2,c(D[D$xx==2*x+1 &
D$yy==y-1,3]))
      if (D[D$xx==2*x & D$yy==y,6] < D[D$xx==2*x+1 & D$yy==y-1,6])
        temoin min2.diag.desc2<-c(temoin min2.diag.desc2,c(D[D$xx==2*x &
D$yy==y,3]))
      }
    }
    temoin min2.diag.desc2
  }
}
# On transforme en dataframe en faisant le lien avec D
Ref min2.Diag.Desc2<-D[temoin min2.diag.desc2,]</pre>
# Quelques statistiques descriptives
summary(Ref min2.Diag.Desc2[,6:12])
# Volume de Bois par Catégorie à 40 ans
# Matrice réunissant les pourcentages et les volumes en m3
Vol Min40.Diag.Desc2<-Sum.Pourc.Vol.Cat(Ref min2.Diag.Desc2)
# pour 50 arbres
Vol50.Min.Diag.Desc2<-
Bois.n.plants(Vol Min40.Diag.Desc2[1,],N=nrow(Ref min2.Diag.Desc2),n=nb.arb
res)
                   Sélection diagonale ascendante, premier individu
```

```
# MEILLEUR PLANT
# Formation des couples diagonaux en commençant par le 1er individu et
sélection du meilleur plant dans chaque couple
```

```
# Initialisation du vecteur de sortie
temoin max2.diag.asc1<-c()
# Détermination du max en x (colonnes) et en y (lignes)
Mx \leftarrow floor(max(as.numeric(D$xx))/2)-1
My<-max(as.numeric(D$yy))-3
# Balayage pour la sélection des meilleurs arbres
for (x in 1:Mx)
  for (y in 1:My)
    if (is.finite(D[D$xx==2*x-1 & D$yy==y,6])==T & is.finite(D[D$xx==2*x &
D\$yy==y+1,6])==T \& D[D\$xx==2*x-1 \& D\$yy==y,1]!=D[D\$xx==2*x \& D\$yy==y+1,1])
      if (D[D$xx==2*x-1 & D$yy==y,6] >= D[D<math>$xx==2*x & D$yy==y+1,6])
        temoin max2.diag.asc1<-c(temoin max2.diag.asc1,c(D[D$xx==2*x-1 &
D$yy==y,3]))
      if (D[D$xx==2*x-1 & D$yy==y,6] < D[D$xx==2*x & D$yy==y+1,6])
        temoin max2.diag.asc1<-c(temoin max2.diag.asc1,c(D[D$xx==2*x &
D$yy==y+1,3]))
      }
    }
    temoin max2.diag.asc1
  }
}
# On transforme en dataframe en faisant le lien avec D
Ref max2.Diag.Asc1<-D[temoin max2.diag.asc1,]</pre>
# Quelques statistiques descriptives
summary(Ref max2.Diag.Asc1[,6:12])
# Volume de Bois par Catégorie à 40 ans
# Matrice réunissant les pourcentages et les volumes en m3
Vol Max40.Diag.Asc1<-Sum.Pourc.Vol.Cat(Ref max2.Diag.Asc1)</pre>
# pour 50 arbres
Vol50.Max.Diag.Asc1<-
Bois.n.plants(Vol Max40.Diag.Asc1[1,], N=nrow(Ref max2.Diag.Asc1), n=nb.arbre
# PIRE PLANT
# Formation des couples diagonaux commençant par le 1er individu et
sélection du PIRE plant dans chaque couple
# Initialisation du vecteur de sortie
temoin min2.diag.asc1<-c()</pre>
# Détermination du max en x (colonnes) et en y (lignes)
Mx \leftarrow floor(max(as.numeric(D$xx))/2)-1
My<-max(as.numeric(D$yy))-3
# Balayage pour la sélection des pires arbres
for (x in 1:Mx)
  for (y in 1:My)
```

```
{
    if (is.finite(D[D$xx==2*x-1 & D$yy==y,6])==T & is.finite(D[D$xx==2*x & C
D$yy==y+1,6])==T & D[D$xx==2*x-1 & D$yy==y,1]!=D[D$xx==2*x & D$yy==y+1,1])
      if (D[D$xx==2*x-1 & D$yy==y,6] >= D[D$xx==2*x & D$yy==y+1,6])
        temoin min2.diag.asc1<-c(temoin min2.diag.asc1,c(D[D$xx==2*x &
D$yy==y+1,3]))
      if (D[D$xx==2*x-1 & D$yy==y,6] < D[D$xx==2*x & D$yy==y+1,6])
        temoin min2.diag.asc1<-c(temoin min2.diag.asc1,c(D[D$xx==2*x-1 &
D$yy==y,3]))
    temoin min2.diag.asc1
  }
}
# On transforme en dataframe en faisant le lien avec D
Ref min2.Diag.Asc1<-D[temoin min2.diag.asc1,]</pre>
# Ouelques statistiques descriptives
summary(Ref min2.Diag.Asc1[,6:12])
# Volume de Bois par Catégorie à 40 ans
# Matrice réunissant les pourcentages et les volumes en m3
Vol Min40.Diag.Asc1<-Sum.Pourc.Vol.Cat(Ref min2.Diag.Asc1)</pre>
# pour 50 arbres
Vol50.Min.Diag.Asc1<-
Bois.n.plants(Vol Min40.Diag.Asc1[1,], N=nrow(Ref min2.Diag.Asc1), n=nb.arbre
                    Sélection diagonale ascendante, second individu
# MEILLEUR PLANT
# Formation des couples diagonaux en commençant par le 2ème individu et
sélection du meilleur plant dans chaque couple
# Initialisation du vecteur de sortie
temoin max2.diag.asc2<-c()
# Détermination du max en x (colonnes) et en y (lignes)
Mx \leftarrow floor(max(as.numeric(D$xx))/2)-1
My<-max(as.numeric(D$yy))-3
# Balayage pour la sélection des meilleurs arbres
for (x in 1:Mx)
{
  for (y in 1:My)
    if (is.finite(D[D$xx==2*x & D$yy==y,6])==T & is.finite(D[D$xx==2*x+1 &
D$yy==y+1,6])==T & D[D$xx==2*x & D$yy==y,1]!=D[D$xx==2*x+1 & D$yy==y+1,1])
      if (D[D$xx==2*x & D$yy==y,6] >= D[D<math>$xx==2*x+1 & D$yy==y+1,6])
        temoin max2.diag.asc2<-c(temoin max2.diag.asc2,c(D[D$xx==2*x &
D$yy==y,3]))
      if (D[D$xx==2*x & D$yy==y,6] < D[D$xx==2*x+1 & D$yy==y+1,6])
```

```
temoin max2.diag.asc2<-c(temoin max2.diag.asc2,c(D[D$xx==2*x+1 &
D$yy==y+1,3]))
    temoin max2.diag.asc2
  }
}
# On transforme en dataframe en faisant le lien avec D
Ref max2.Diag.Asc2<-D[temoin max2.diag.asc2,]</pre>
# Quelques statistiques descriptives
summary(Ref max2.Diag.Asc2[,6:12])
# Volume de Bois par Catégorie à 40 ans
# Matrice réunissant les pourcentages et les volumes en m3
Vol Max40.Diag.Asc2 <- Sum.Pourc.Vol.Cat (Ref max2.Diag.Asc2)
# pour 50 arbres
Vol50.Max.Diag.Asc2<-
Bois.n.plants(Vol Max40.Diag.Asc2[1,], N=nrow(Ref max2.Diag.Asc2), n=nb.arbre
# PIRE PLANT
# Formation des couples diagonaux commençant par le 2ème individu et
sélection du pire plant dans chaque couple
# Initialisation du vecteur de sortie
temoin min2.diag.asc2<-c()
# Détermination du max en x (colonnes) et en y (lignes)
Mx \leftarrow floor(max(as.numeric(D$xx))/2)-1
My<-max(as.numeric(D$yy))-3
# Balayage pour la sélection des pires arbres
for (x in 1:Mx)
  for (y in 1:My)
    if (is.finite(D[D$xx==2*x & D$yy==y,6])==T & is.finite(D[D$xx==2*x+1 &
D\$yy==y+1,6])==T \& D[D\$xx==2*x \& D\$yy==y,1]!=D[D\$xx==2*x+1 \& D\$yy==y+1,1])
      if (D[D$xx==2*x & D$yy==y,6] >= D[D$xx==2*x+1 & D$yy==y+1,6])
        temoin min2.diag.asc2<-c(temoin min2.diag.asc2,c(D[D$xx==2*x+1 &
D$yy==y+1,3]))
      }
      if (D[D$xx==2*x & D$yy==y,6] < D[D$xx==2*x+1 & D$yy==y+1,6])
        temoin min2.diag.asc2<-c(temoin min2.diag.asc2,c(D[D$xx==2*x &
D$yy==y,3]))
      }
    temoin min2.diag.asc2
  }
}
# On transforme en dataframe en faisant le lien avec D
Ref min2.Diag.Asc2<-D[temoin min2.diag.asc2,]</pre>
```

```
# Quelques statistiques descriptives
summary(Ref_min2.Diag.Asc2[,6:12])

# Volume de Bois par Catégorie à 40 ans
# Matrice réunissant les pourcentages et les volumes en m3
Vol_Min40.Diag.Asc2<-Sum.Pourc.Vol.Cat(Ref_min2.Diag.Asc2)

# pour 50 arbres
Vol50.Min.Diag.Asc2<-
Bois.n.plants(Vol_Min40.Diag.Asc2[1,],N=nrow(Ref_min2.Diag.Asc2),n=nb.arbre
s)</pre>
```

Annexe 9 : Code pour la sélection aléatoire des plants

```
### Tirages aléatoires dans les couples avec remise ###
# Le nombre de tirage aléatoire
nb.sample <- 100
                    Sélection aléatoire horizontale, premier individu
# Tirage aléatoire dans les couples horizontaux commençant par le 1er
individu
set.seed (1234)
tirage2.horiz1 <-
apply (matrix (0, nrow (Ref max2.Horiz1), nb.sample), MARGIN=2, FUN=samplech1)
# On détermine les volumes de chaque parcelle tirée aléatoirement
Tirage2.Horiz1<-data.tirage(tirage2.horiz1)</pre>
Vol.Tirage.Horiz1<-Tirage2.Horiz1$Vol</pre>
Pourc.Tirage.Horiz1<-Tirage2.Horiz1$Pourc
# Volume pour nb.arbres arbres
Vol50.Tirage.Horiz1<-
Bois.n.plants(Vol.Tirage.Horiz1, N=nrow(Ref max2.Horiz1), n=nb.arbres)
# Matrice contenant les pourcentages d'individus contribuant à chaque
catégorie pour chaque tirage
M<-matrix (NA, nrow=nb.sample, ncol=5)
for (i in 1:nb.sample)
  X<-ind.in.Cat(Tirage2.Horiz1$Data[[i]])</pre>
  M[i,] < -X[2,]
}
Prop.ind.H1<-round(apply(M, MARGIN=2, FUN=mean))</pre>
                    Sélection aléatoire horizontale, second individu
# Tirage aléatoire dans les couples horizontaux commençant par le 2ème
individu
set.seed(1234)
tirage2.horiz2 <- apply (matrix(0, nrow(Ref max2.Horiz2), nb.sample),</pre>
MARGIN=2, FUN=samplech2)
# On détermine les volumes de chaque parcelle tirée aléatoirement
Tirage2.Horiz2<-data.tirage(tirage2.horiz2)</pre>
Vol.Tirage.Horiz2<-Tirage2.Horiz2$Vol</pre>
Pourc.Tirage.Horiz2<-Tirage2.Horiz2$Pourc
# Volume pour nb.arbres arbres
Vol50.Tirage.Horiz2<-
Bois.n.plants(Vol.Tirage.Horiz2, N=nrow(Ref max2.Horiz2), n=nb.arbres)
# Matrice contenant les pourcentages d'individus contribuant à chaque
catégorie pour chaque tirage
M<-matrix (NA, nrow=nb.sample, ncol=5)
for (i in 1:nb.sample)
  X<-ind.in.Cat(Tirage2.Horiz2$Data[[i]])</pre>
```

```
M[i,] < -X[2,]
}
Prop.ind.H2<-round(apply(M, MARGIN=2, FUN=mean))</pre>
                      Sélection aléatoire verticale, premier individu
# Tirage aléatoire dans les couples verticaux commençant par le 1er
individu
set.seed (1234)
tirage2.verti1 <- apply(matrix(0, nrow(Ref max2.Verti1), nb.sample),</pre>
MARGIN=2, FUN=samplecv1)
# On détermine les volumes de chaque parcelle tirée aléatoirement
Tirage2.Verti1<-data.tirage(tirage2.verti1)</pre>
Vol.Tirage.Verti1<-Tirage2.Verti1$Vol</pre>
Pourc.Tirage.Verti1<-Tirage2.Verti1$Pourc
# Volume pour nb.arbres arbres
Vol50.Tirage.Verti1<-
Bois.n.plants(Vol.Tirage.Verti1, N=nrow(Ref max2.Verti1), n=nb.arbres)
# Matrice contenant les pourcentages d'individus contribuant à chaque
catégorie pour chaque tirage
M<-matrix (NA, nrow=nb.sample, ncol=5)
for (i in 1:nb.sample)
  X<-ind.in.Cat(Tirage2.Verti1$Data[[i]])</pre>
  M[i,] < -X[2,]
}
Prop.ind.V1<-round(apply(M, MARGIN=2, FUN=mean))</pre>
                      Sélection aléatoire verticale, second individu
# Tirage aléatoire dans les couples verticaux commençant par le 2ème
individu
set.seed (1234)
tirage2.verti2 <- apply (matrix(0, nrow(Ref max2.Verti2), nb.sample),</pre>
MARGIN=2, FUN=samplecv2)
# On détermine les volumes de chaque parcelle tirée aléatoirement
Tirage2.Verti2<-data.tirage(tirage2.verti2)</pre>
Vol.Tirage.Verti2<-Tirage2.Verti2$Vol
Pourc.Tirage.Verti2<-Tirage2.Verti2$Pourc
# Volume pour nb.arbres arbres
Vol50.Tirage.Verti2<-
Bois.n.plants(Vol.Tirage.Verti2, N=nrow(Ref max2.Verti2), n=nb.arbres)
# Matrice contenant les pourcentages d'individus contribuant à chaque
catégorie pour chaque tirage
M<-matrix (NA, nrow=nb.sample, ncol=5)
for (i in 1:nb.sample)
  X<-ind.in.Cat(Tirage2.Verti2$Data[[i]])</pre>
  M[i,] <-X[2,]
Prop.ind.V2<-round(apply(M, MARGIN=2, FUN=mean))</pre>
```

71

Sélection aléatoire diagonale descendante, premier individu

```
# Tirage aléatoire dans les couples diagonaux commençant par le 1er
individu
set.seed(1234)
tirage2.diag.desc1 <- apply(matrix(0, nrow(Ref max2.Diag.Desc1), nb.sample),</pre>
MARGIN=2, FUN=samplecdd1)
# On détermine les volumes de chaque parcelle tirée aléatoirement
Tirage2.Diag.Desc1<-data.tirage(tirage2.diag.desc1)</pre>
Vol.Tirage.Diag.Desc1<-Tirage2.Diag.Desc1$Vol
Pourc.Tirage.Diag.Desc1<-Tirage2.Diag.Desc1$Pourc
# Volume pour nb.arbres arbres
Vol50.Tirage.Diag.Desc1<-
Bois.n.plants(Vol.Tirage.Diag.Desc1, N=nrow(Ref max2.Diag.Desc1), n=nb.arbres
# Matrice contenant les pourcentages d'individus contribuant à chaque
catégorie pour chaque tirage
M<-matrix (NA, nrow=nb.sample, ncol=5)
for (i in 1:nb.sample)
  X<-ind.in.Cat(Tirage2.Diag.Desc1$Data[[i]])</pre>
  M[i,] < -X[2,]
Prop.ind.DD1<-round(apply(M, MARGIN=2, FUN=mean))</pre>
                Sélection aléatoire diagonale descendante, second individu
# Tirage aléatoire dans les couples diagonaux commençant par le 2ème
individu
set.seed(1234)
tirage2.diag.desc2 <- apply(matrix(0, nrow(Ref max2.Diag.Desc2), nb.sample),</pre>
MARGIN=2, FUN=samplecdd2)
# On détermine les volumes de chaque parcelle tirée aléatoirement
Tirage2.Diag.Desc2<-data.tirage(tirage2.diag.desc2)</pre>
Vol.Tirage.Diag.Desc2<-Tirage2.Diag.Desc2$Vol
Pourc.Tirage.Diag.Desc2<-Tirage2.Diag.Desc2$Pourc
# Volume pour nb.arbres arbres
Vol50.Tirage.Diag.Desc2<-</pre>
Bois.n.plants(Vol.Tirage.Diag.Desc2, N=nrow(Ref max2.Diag.Desc2), n=nb.arbres
# Matrice contenant les pourcentages d'individus contribuant à chaque
catégorie pour chaque tirage
M<-matrix (NA, nrow=nb.sample, ncol=5)
for (i in 1:nb.sample)
  X<-ind.in.Cat(Tirage2.Diag.Desc2$Data[[i]])</pre>
  M[i,] <-X[2,]
}
Prop.ind.DD2<-round(apply(M,MARGIN=2,FUN=mean))</pre>
```

Sélection aléatoire diagonale ascendante, premier individu

```
# Tirage aléatoire dans les couples diagonaux commençant par le 1er
individu
set.seed(1234)
tirage2.diag.asc1 <- apply(matrix(0, nrow(Ref max2.Diag.Asc1), nb.sample),</pre>
MARGIN=2, FUN=samplecda1)
# On détermine les volumes de chaque parcelle tirée aléatoirement
Tirage2.Diag.Asc1<-data.tirage(tirage2.diag.asc1)</pre>
Vol.Tirage.Diag.Asc1<-Tirage2.Diag.Asc1$Vol</pre>
Pourc.Tirage.Diag.Asc1<-Tirage2.Diag.Asc1$Pourc
# Volume pour nb.arbres arbres
Vol50.Tirage.Diag.Asc1<-
Bois.n.plants(Vol.Tirage.Diag.Asc1, N=nrow(Ref max2.Diag.Asc1), n=nb.arbres)
# Matrice contenant les pourcentages d'individus contribuant à chaque
catégorie pour chaque tirage
M<-matrix (NA, nrow=nb.sample, ncol=5)
for (i in 1:nb.sample)
  X<-ind.in.Cat(Tirage2.Diag.Asc1$Data[[i]])
  M[i,] < -X[2,]
}
Prop.ind.DA1<-round(apply(M, MARGIN=2, FUN=mean))</pre>
                 Sélection aléatoire diagonale scendante, second individu
# Tirage aléatoire dans les couples diagonaux commençant par le 2ème
individu
set.seed(1234)
tirage2.diag.asc2 <- apply(matrix(0, nrow(Ref max2.Diag.Asc2), nb.sample),</pre>
MARGIN=2, FUN=samplecda2)
# On détermine les volumes de chaque parcelle tirée aléatoirement
Tirage2.Diag.Asc2<-data.tirage(tirage2.diag.asc2)</pre>
Vol.Tirage.Diag.Asc2<-Tirage2.Diag.Asc2$Vol
Pourc.Tirage.Diag.Asc2<-Tirage2.Diag.Asc2$Pourc
# Volume pour nb.arbres arbres
Vol50.Tirage.Diag.Asc2<-
Bois.n.plants(Vol.Tirage.Diag.Asc2, N=nrow(Ref max2.Diag.Asc2), n=nb.arbres)
# Matrice contenant les pourcentages d'individus contribuant à chaque
catégorie pour chaque tirage
M<-matrix (NA, nrow=nb.sample, ncol=5)
for (i in 1:nb.sample)
  X<-ind.in.Cat(Tirage2.Diag.Asc2$Data[[i]])
  M[i,] <-X[2,]
Prop.ind.DA2<-round(apply(M, MARGIN=2, FUN=mean))</pre>
```

Annexe 10: Code pour la compilation des directions

```
# Matrice comportant les volumes dans chaque catégorie de bois pour tous
les tirages (qqsoit la direction)
Vol50.Cat<-Vol.all.Tirages()</pre>
# Représentation des données
str(Vol50.Cat)
# Pour chaque catégorie (+ Total), on extrait le volume minimum et maximum
Vol50.min.max<-matrix(NA, ncol=2, nrow=5)</pre>
colnames(Vol50.min.max)<-c("min", "max")</pre>
rownames (Vol50.min.max) <-c ("Cat.A", "Cat.B", "Cat.C", "Cat.D", "Total")
for (i in 1:5)
  Vol50.min.max[i,1]<-</pre>
min(Vol50.Min.Horiz1[i], Vol50.Min.Horiz2[i], Vol50.Min.Verti1[i], Vol50.Min.V
erti2[i],
Vol50.Min.Diag.Desc1[i], Vol50.Min.Diag.Desc2[i], Vol50.Min.Diag.Asc1[i], Vol5
0.Min.Diag.Asc2[i])
  Vol50.min.max[i,2]<-</pre>
max(Vol50.Max.Horiz1[i], Vol50.Max.Horiz2[i], Vol50.Max.Verti1[i], Vol50.Max.V
erti2[i],
Vol50.Max.Diag.Desc1[i],Vol50.Max.Diag.Desc2[i],Vol50.Max.Diag.Asc1[i],Vol5
0.Max.Diag.Asc2[i])
}
```

Annexe 11 : Code préparatif pour le tableau récapitulatif

```
# Détermination dans chaque direction :
# les diamètres moyens des arbres de chaque tirage
# les nombres d'arbres qui atteindront 35 cm de diamètre
# les diamètres moyens des arbres à potentiel de chaque tirage
TH1<-tab1(Tirage2.Horiz1,h.min,h.max)</pre>
TH2<-tab1(Tirage2.Horiz2, h.min, h.max)
TV1<-tab1(Tirage2.Verti1, h.min, h.max)
TV2<-tab1(Tirage2.Verti2, h.min, h.max)
TDD1<-tab1(Tirage2.Diag.Desc1, h.min, h.max)
TDD2<-tab1(Tirage2.Diag.Desc2,h.min,h.max)
TDA1<-tab1(Tirage2.Diag.Asc1, h.min, h.max)
TDA2<-tab1(Tirage2.Diag.Asc2,h.min,h.max)
diam.moven<-
c(TH1[[1]],TH2[[1]],TV1[[1]],TV2[[1]],TDD1[[1]],TDD2[[1]],TDA1[[1]],TDA2[[1
11)
nb.pot.all<-
c(TH1[[2]],TH2[[2]],TV1[[2]],TV2[[2]],TDD1[[2]],TDD2[[2]],TDA1[[2]],TDA2[[2
11)
diam.moyen.pot<-
c(TH1[[3]],TH2[[3]],TV1[[3]],TV2[[3]],TDD1[[3]],TDD2[[3]],TDA1[[3]],TDA2[[3
11)
# Matrice 2 colonnes :
# colonne 1 : pourcentage de plant contribuant aux catégories par
direction, si pires plants
# colonne 2 : pourcentage de plant contribuant aux catégories par
direction, si meilleurs plants
Prop.ind<-matrix (NA, nrow=45, ncol=2)
for (i in 0:3)
  Prop.ind[(i*9+1),1]<-ind.in.Cat(Ref min2.Horiz1)[2,(i+1)]
  Prop.ind[(i*9+1),2]<-ind.in.Cat(Ref max2.Horiz1)[2,(i+1)]
  Prop.ind[(i*9+2),1]<-ind.in.Cat(Ref min2.Horiz2)[2,(i+1)]
  Prop.ind[(i*9+2),2]<-ind.in.Cat(Ref max2.Horiz2)[2,(i+1)]
  Prop.ind[(i*9+3),1]<-ind.in.Cat(Ref min2.Verti1)[2,(i+1)]
  Prop.ind[(i*9+3),2]<-ind.in.Cat(Ref_max2.Verti1)[2,(i+1)]
  Prop.ind[(i*9+4),1]<-ind.in.Cat(Ref_min2.Verti2)[2,(i+1)]
  Prop.ind[(i*9+4),2]<-ind.in.Cat(Ref_max2.Verti2)[2,(i+1)]</pre>
  Prop.ind[(i*9+5),1]<-ind.in.Cat(Ref_min2.Diag.Desc1)[2,(i+1)]
  Prop.ind[(i*9+5),2]<-ind.in.Cat(Ref max2.Diag.Desc1)[2,(i+1)]
  Prop.ind[(i*9+6),1]<-ind.in.Cat(Ref_min2.Diag.Desc2)[2,(i+1)]
  Prop.ind[(i*9+6),2]<-ind.in.Cat(Ref_max2.Diag.Desc2)[2,(i+1)]
  Prop.ind[(i*9+7),1]<-ind.in.Cat(Ref min2.Diag.Asc1)[2,(i+1)]
  Prop.ind[(i*9+7),2]<-ind.in.Cat(Ref max2.Diag.Asc1)[2,(i+1)]
  Prop.ind[(i*9+8),1]<-ind.in.Cat(Ref_min2.Diag.Asc2)[2,(i+1)]</pre>
  Prop.ind[(i*9+8),2]<-ind.in.Cat(Ref max2.Diag.Asc2)[2,(i+1)]
Prop.ind.Cat<-matrix(NA, nrow=45, ncol=1)</pre>
for (i in 0:4)
  Prop.ind.Cat[(i*9+1),1]<-Prop.ind.H1[(i+1)]
  Prop.ind.Cat[(i*9+2),1]<-Prop.ind.H2[(i+1)]
  Prop.ind.Cat[(i*9+3),1]<-Prop.ind.V1[(i+1)]
  Prop.ind.Cat[(i*9+4),1]<-Prop.ind.V2[(i+1)]
  Prop.ind.Cat[(i*9+5),1]<-Prop.ind.DD1[(i+1)]
  Prop.ind.Cat[(i*9+6),1]<-Prop.ind.DD2[(i+1)]
  Prop.ind.Cat[(i*9+7),1]<-Prop.ind.DA1[(i+1)]
  Prop.ind.Cat[(i*9+8),1]<-Prop.ind.DA2[(i+1)]
}
```

Annexe 11 : Code de sauvegarde et d'importation des données

Sauvegarde des données

```
Fichier <- paste ('Données Tirages', PARCELLE, '.xlsx')
# permet d'éviter de relancer l'opération des tirages aléatoires
wb<-createWorkbook(type="xlsx") # Création du classeur</pre>
sheet1 <- createSheet(wb, sheetName = "vol tirages") # Feuille 1</pre>
addDataFrame(Vol50.Cat, sheet1)
sheet2 <- createSheet(wb, sheetName = "vol min max") # Feuille 2</pre>
addDataFrame(Vol50.min.max, sheet2)
sheet3 <- createSheet(wb, sheetName = "diam.moyen") # Feuille 3</pre>
addDataFrame(diam.moyen, sheet3)
sheet4 <- createSheet(wb, sheetName = "nb.pot.all") # Feuille 4</pre>
addDataFrame(nb.pot.all, sheet4)
sheet5 <- createSheet(wb, sheetName = "diam.moyen.pot") # Feuille 5</pre>
addDataFrame(diam.moyen.pot, sheet5)
sheet6 <- createSheet(wb, sheetName = "prop.ind.Cat") # Feuille 6</pre>
addDataFrame(Prop.ind.Cat, sheet6)
saveWorkbook(wb, Fichier) # Enregistrer le classeur Excel
```

Importation des données

```
Vol50.Cat <-read.xlsx(Fichier, sheetIndex=1,header=TRUE,colIndex=c(2:7))
Vol50.min.max <-read.xlsx(Fichier,
sheetIndex=2,header=TRUE,colIndex=c(2,3))
diam.moyen<-read.xlsx(Fichier, sheetIndex=3,header=TRUE,colIndex=c(2))
nb.pot.all<-read.xlsx(Fichier, sheetIndex=4,header=TRUE,colIndex=c(2))
diam.moyen.pot<-read.xlsx(Fichier, sheetIndex=5,header=TRUE,colIndex=c(2))
Prop.ind.Cat<-read.xlsx(Fichier, sheetIndex=6,header=TRUE,colIndex=c(2))
str(Vol50.Cat) # vérification
str(Vol50.min.max)
```

Annexe 12 : Code pour les sorties graphiques des sélections des meilleurs et des pires plants

```
pdf (paste ("Graphique", PARCELLE, "Référent.pdf"))
                   Sélection horizontale, premier individu (meilleurs)
# Représentation des individus sélectionnés
plot(as.numeric(as.character(Ref max2.Horiz1$xx)),as.numeric(as.character(R
ef max2.Horiz1$yy)),
     main="Meilleurs individus sélectionnés, balayage horizontal, premier
individu",
     xlab ="Coordonnée xx",
     ylab = "Coordonnée yy")
# Temps d'élagage
stop.elagage (Ref max2.Horiz1, h.min, h.max, lim.an=10, lim.pourc=0.80)
text(22,35,"Horizontal 1er ind., max")
stop.elagage(Ref max2.Horiz1, h.min, h.max, lim.an=20, lim.pourc=0.70)
text(22,35,"Horizontal 1er ind., max")
stop.elagage (Ref max2.Horiz1, h.min, h.max, lim.an=20, lim.pourc=0.80)
text(22,35,"Horizontal 1er ind., max")
# Diamètre à l'année de la colonne 10
hist((Ref max2.Horiz1[,10]/(10*pi)), freq=F, breaks="Sturges",
     main = paste("Histogramme du diamètre à",c.max, "ans pour
Ref max2.Horiz1"),
     xlab=paste("Diamètre à",c.max, "ans, en cm"),ylab="Densité")
rug(jitter((Ref max2.Horiz1[,10]/(10*pi))))
                     Sélection horizontale, premier individu (pires)
# Représentation des individus
plot(as.numeric(as.character(Ref min2.Horiz1$xx)),as.numeric(as.character(R
ef min2.Horiz1$yy)),
     main="Pires individus sélectionnés, balayage horizontal, premier
individu",
     xlab = "Coordonnée xx"
     ylab = "Coordonnée yy")
# Temps d'élagage
stop.elagage(Ref min2.Horiz1,h.min,h.max,lim.an=10,lim.pourc=0.80)
text(22,35,"Horizontal 1er ind., min")
stop.elagage(Ref min2.Horiz1,h.min,h.max,lim.an=20,lim.pourc=0.70)
text(22,35,"Horizontal 1er ind., min")
stop.elagage (Ref min2.Horiz1, h.min, h.max, lim.an=20, lim.pourc=0.80)
text(22,35,"Horizontal 1er ind., min")
# Diamètre à l'année de la colonne 10
hist((Ref min2.Horiz1[,10]/(10*pi)), freq=F, breaks="Sturges",
     main = paste ("Histogramme du diamètre à", c.max, "ans pour
Ref min2.Horiz1"),
     xlab=paste("Diamètre à",c.max, "ans, en cm"), ylab="Densité")
rug(jitter((Ref min2.Horiz1[,10]/(10*pi))))
                    Sélection horizontale, second individu (meilleurs)
# Représentation des individus
plot(as.numeric(as.character(Ref_max2.Horiz2$xx)),as.numeric(as.character(R
ef max2.Horiz2$yy)),
```

```
main="Meilleurs individus sélectionnés, balayage horizontal, deuxième
individu",
     xlab = "Coordonnée xx" ,
     ylab = "Coordonnée yy")
# Temps d'élagage
stop.elagage(Ref max2.Horiz2,h.min,h.max,lim.an=10,lim.pourc=0.80)
text(22,35,"Horizontal 2ème ind., max")
stop.elagage(Ref max2.Horiz2,h.min,h.max,lim.an=20,lim.pourc=0.70)
text(22,35,"Horizontal 2ème ind., max")
stop.elagage(Ref max2.Horiz2,h.min,h.max,lim.an=20,lim.pourc=0.80)
text(22,35,"Horizontal 2ème ind., max")
# Diamètre à l'année de la colonne 10
hist((Ref max2.Horiz2[,10]/(10*pi)),freq=F,breaks="Sturges",
     main = paste("Histogramme du diamètre à",c.max,"ans pour
Ref max2.Horiz2"),
     xlab=paste("Diamètre à",c.max, "ans, en cm"),ylab="Densité")
rug(jitter((Ref max2.Horiz2[,10]/(10*pi))))
                     Sélection horizontale, second individu (pires)
# Représentation des individus
plot(as.numeric(as.character(Ref min2.Horiz2$xx)),as.numeric(as.character(R
ef min2.Horiz2$yy)),
     main="Pires individus sélectionnés, balayage horizontal, deuxième
individu",
     xlab = "Coordonnée xx" ,
     ylab = "Coordonnée yy")
# Temps d'élagage
stop.elagage (Ref min2.Horiz2, h.min, h.max, lim.an=10, lim.pourc=0.80)
text(22,35,"Horizontal 2ème ind., min")
stop.elagage(Ref min2.Horiz2,h.min,h.max,lim.an=20,lim.pourc=0.70)
text(22,35,"Horizontal 2ème ind., min")
stop.elagage(Ref min2.Horiz2,h.min,h.max,lim.an=20,lim.pourc=0.80)
text(22,35,"Horizontal 2ème ind., min")
# Diamètre à l'année de la colonne 10
hist((Ref min2.Horiz2[,10]/(10*pi)),freq=F,breaks="Sturges",
     main = paste("Histogramme du diamètre à", c.max, "ans pour
Ref min2.Horiz2"),
     xlab=paste("Diamètre à",c.max, "ans, en cm"),ylab="Densité")
rug(jitter((Ref min2.Horiz2[,10]/(10*pi))))
                    Sélection verticale, premier individu (meilleurs)
# Représentation des individus
plot(as.numeric(as.character(Ref max2.Vertil$xx)),as.numeric(as.character(R
ef max2.Verti1$yy)),
     main="Meilleurs individus sélectionnés, balayage vertical, premier
individu",
     xlab ="Coordonnée xx" ,
     ylab = "Coordonnée yy")
# Temps d'élagage
stop.elagage(Ref max2.Verti1, h.min, h.max, lim.an=10, lim.pourc=0.80)
text(22,35,"Vertical 1er ind., max")
stop.elagage(Ref max2.Verti1, h.min, h.max, lim.an=20, lim.pourc=0.70)
text(22,35,"Vertical 1er ind., max")
stop.elagage (Ref max2.Verti1, h.min, h.max, lim.an=20, lim.pourc=0.80)
```

```
text(22,35,"Vertical 1er ind., max")
# Diamètre à l'année de la colonne 10
hist((Ref max2.Verti1[,10]/(10*pi)), freq=F, breaks="Sturges",
     main = paste("Histogramme du diamètre à", c.max, "ans pour
Ref max2.Verti1"),
     xlab=paste("Diamètre à",c.max,"ans, en cm"),ylab="Densité")
rug(jitter((Ref max2.Verti1[,10]/(10*pi))))
                      Sélection verticale, premier individu (pires)
# Représentation des individus
plot(as.numeric(as.character(Ref min2.Verti1$xx)),as.numeric(as.character(R
ef min2. Verti1$yy)),
     main="Pires individus sélectionnés, balayage vertical, premier
individu",
     xlab = "Coordonnée xx",
     ylab = "Coordonnée vy")
# Temps d'élagage
stop.elagage (Ref min2.Verti1, h.min, h.max, lim.an=10, lim.pourc=0.80)
text(22,35,"Vertical 1er ind., min")
stop.elagage(Ref min2.Verti1, h.min, h.max, lim.an=20, lim.pourc=0.70)
text(22,35,"Vertical 1er ind., min")
stop.elagage (Ref min2.Verti1, h.min, h.max, lim.an=20, lim.pourc=0.80)
text(22,35,"Vertical 1er ind., min")
# Diamètre à l'année de la colonne 10
hist((Ref min2.Verti1[,10]/(10*pi)),freq=F,breaks="Sturges",
     main = paste("Histogramme du diamètre à",c.max,"ans pour
Ref min2.Verti1"),
     xlab=paste("Diamètre à",c.max,"ans, en cm"),ylab="Densité")
rug(jitter((Ref min2.Verti1[,10]/(10*pi))))
                    Sélection verticale, second individu (meilleurs)
# Représentation des individus
plot(as.numeric(as.character(Ref max2.Verti2$xx)),as.numeric(as.character(R
ef max2.Verti2$yy)),
     main="Meilleurs individus sélectionnés, balayage vertical, deuxième
individu",
     xlab ="Coordonnée xx" ,
     ylab = "Coordonnée yy")
# Temps d'élagage
stop.elagage(Ref max2.Verti2,h.min,h.max,lim.an=10,lim.pourc=0.80)
text(22,35,"Vertical 2ème ind., max")
stop.elagage(Ref max2.Verti2,h.min,h.max,lim.an=20,lim.pourc=0.70)
text(22,35,"Vertical 2ème ind., max")
stop.elagage(Ref max2.Verti2, h.min, h.max, lim.an=20, lim.pourc=0.80)
text(22,35,"Vertical 2ème ind., max")
# Diamètre à l'année de la colonne 10
hist((Ref max2.Verti2[,10]/(10*pi)), freq=F, breaks="Sturges",
     main = paste("Histogramme du diamètre à", c.max, "ans pour
Ref max2. Verti2"),
     xlab=paste("Diamètre à",c.max,"ans, en cm"),ylab="Densité")
rug(jitter((Ref max2.Verti2[,10]/(10*pi))))
```

Sélection verticale, second individu (pires)

```
# Représentation des individus
plot(as.numeric(as.character(Ref min2.Verti2$xx)),as.numeric(as.character(R
ef min2.Verti2$yy)),
     main="Pires individus sélectionnés, balayage vertical, deuxième
individu",
     xlab = "Coordonnée xx"
     ylab = "Coordonnée yy")
# Temps d'élagage
stop.elagage (Ref min2.Verti2, h.min, h.max, lim.an=10, lim.pourc=0.80)
text(22,35,"Vertical 2ème ind., min")
stop.elagage(Ref min2.Verti2, h.min, h.max, lim.an=20, lim.pourc=0.70)
text(22,35,"Vertical 2ème ind., min")
stop.elagage (Ref min2.Verti2, h.min, h.max, lim.an=20, lim.pourc=0.80)
text(22,35,"Vertical 2ème ind., min")
# Diamètre à l'année de la colonne 10
hist((Ref min2.Verti2[,10]/(10*pi)), freq=F, breaks="Sturges",
     main = paste ("Histogramme du diamètre à", c.max, "ans pour
Ref min2. Verti2"),
     xlab=paste("Diamètre à",c.max, "ans, en cm"), ylab="Densité")
rug(jitter((Ref min2.Verti2[,10]/(10*pi))))
               Sélection diagonale descendante, premier individu (meilleurs)
# Représentation des individus
plot(as.numeric(as.character(Ref max2.Diag.Desc1$xx)),as.numeric(as.charact
er(Ref max2.Diag.Desc1$yy)),
     main="Meilleurs individus sélectionnés, balayage diagonal descendant,
premier individu",
     xlab ="Coordonnée xx" ,
     ylab = "Coordonnée yy")
# Temps d'élagage
stop.elagage (Ref max2.Diag.Desc1, h.min, h.max, lim.an=10, lim.pourc=0.80)
text(22,35,"Diag.D 1er ind., max")
stop.elagage (Ref max2.Diag.Desc1, h.min, h.max, lim.an=20, lim.pourc=0.70)
text(22,35,"Diag.D 1er ind., max")
stop.elagage(Ref max2.Diag.Desc1, h.min, h.max, lim.an=20, lim.pourc=0.80)
text(22,35,"Diag.D 1er ind., max")
# Diamètre à l'année de la colonne 10
hist((Ref max2.Diag.Desc1[,10]/(10*pi)),freq=F,breaks="Sturges",
     main = paste("Histogramme du diamètre à", c.max, "ans pour
Ref max2.Diag.Desc1"),
     xlab=paste("Diamètre à",c.max, "ans, en cm"), ylab="Densité")
rug(jitter((Ref max2.Diag.Desc1[,10]/(10*pi))))
                Sélection diagonale descendante, premier individu (pires)
# Représentation des individus
plot(as.numeric(as.character(Ref min2.Diag.Desc1$xx)), as.numeric(as.charact
er(Ref min2.Diag.Desc1$yy)),
     main="Pires individus sélectionnés, balayage diagonal descendant,
premier individu",
     xlab = "Coordonnée xx"
     ylab = "Coordonnée vy")
# Temps d'élagage
```

```
stop.elagage (Ref min2.Diag.Desc1, h.min, h.max, lim.an=10, lim.pourc=0.80)
text(22,35,"Diag.D 1er ind., min")
stop.elagage(Ref min2.Diag.Desc1,h.min,h.max,lim.an=20,lim.pourc=0.70)
text(22,35,"Diag.D 1er ind., min")
stop.elagage (Ref min2.Diag.Desc1, h.min, h.max, lim.an=20, lim.pourc=0.80)
text(22,35,"Diag.D 1er ind., min")
# Diamètre à l'année de la colonne 10
hist((Ref min2.Diag.Desc1[,10]/(10*pi)),freq=F,breaks="Sturges",
     main = paste("Histogramme du diamètre à", c.max, "ans pour
Ref min2.Diag.Desc1"),
     xlab=paste("Diamètre à",c.max,"ans, en cm"),ylab="Densité")
rug(jitter((Ref min2.Diag.Desc1[,10]/(10*pi))))
               Sélection diagonale descendante, second individu (meilleurs)
# Représentation des individus
plot(as.numeric(as.character(Ref max2.Diag.Desc2$xx)),as.numeric(as.charact
er(Ref max2.Diag.Desc2$yy)),
     main="Meilleurs individus sélectionnés, balayage diagonal descendant,
deuxième individu",
     xlab = "Coordonnée xx",
     ylab = "Coordonnée yy")
# Temps d'élagage
stop.elagage (Ref max2.Diag.Desc2, h.min, h.max, lim.an=10, lim.pourc=0.80)
text(22,35,"Diag.D 2ème ind., max")
stop.elagage(Ref max2.Diag.Desc2, h.min, h.max, lim.an=20, lim.pourc=0.70)
text(22,35,"Diag.D 2ème ind., max")
stop.elagage(Ref max2.Diag.Desc2, h.min, h.max, lim.an=20, lim.pourc=0.80)
text(22,35,"Diag.D 2ème ind., max")
# Diamètre à l'année de la colonne 10
hist((Ref max2.Diag.Desc2[,10]/(10*pi)),freq=F,breaks="Sturges",
     main = paste("Histogramme du diamètre à", c.max, "ans pour
Ref max2.Diag.Desc2"),
     xlab=paste("Diamètre à",c.max,"ans, en cm"),ylab="Densité")
rug(jitter((Ref max2.Diag.Desc2[,10]/(10*pi))))
                Sélection diagonale descendante, second individu (pires)
# Représentation des individus
plot(as.numeric(as.character(Ref min2.Diag.Desc2$xx)),as.numeric(as.charact
er(Ref min2.Diag.Desc2$yy)),
     main="Pires individus sélectionnés, balayage diagonal descendant,
deuxième individu",
     xlab ="Coordonnée xx" ,
     ylab = "Coordonnée yy")
# Temps d'élagage
stop.elagage (Ref min2.Diag.Desc2, h.min, h.max, lim.an=10, lim.pourc=0.80)
text(22,35,"Diag.D 2ème ind., min")
stop.elagage (Ref min2.Diag.Desc2, h.min, h.max, lim.an=20, lim.pourc=0.70)
text(22,35,"Diag.D 2ème ind., min")
stop.elagage(Ref min2.Diag.Desc2,h.min,h.max,lim.an=20,lim.pourc=0.80)
text(22,35,"Diag.D 2ème ind., min")
# Diamètre à l'année de la colonne 10
hist((Ref min2.Diag.Desc2[,10]/(10*pi)),freq=F,breaks="Sturges",
     main = paste("Histogramme du diamètre à", c.max, "ans pour
Ref min2.Diag.Desc2"),
```

```
xlab=paste("Diamètre à",c.max, "ans, en cm"),ylab="Densité")
rug(jitter((Ref min2.Diag.Desc2[,10]/(10*pi))))
               Sélection diagonale ascendante, premier individu (meilleurs)
# Représentation des individus
plot(as.numeric(as.character(Ref max2.Diag.Asc1$xx)),as.numeric(as.characte
r(Ref max2.Diag.Asc1$yy)),
     main="Meilleurs individus sélectionnés, balayage diagonal ascendant,
premier individu",
     xlab = "Coordonnée xx",
     ylab = "Coordonnée yy")
# Temps d'élagage
stop.elagage (Ref max2.Diag.Asc1, h.min, h.max, lim.an=10, lim.pourc=0.80)
text(22,35,"Diag.A 1er ind., max")
stop.elagage(Ref max2.Diag.Asc1, h.min, h.max, lim.an=20, lim.pourc=0.70)
text(22,35,"Diag.A 1er ind., max")
stop.elagage (Ref max2.Diag.Asc1, h.min, h.max, lim.an=20, lim.pourc=0.80)
text (22, 35, "Diag. A 1er ind., max")
# Diamètre à l'année de la colonne 10
hist((Ref max2.Diag.Asc1[,10]/(10*pi)), freq=F, breaks="Sturges",
     main = paste("Histogramme du diamètre à", c.max, "ans pour
Ref max2.Diag.Asc1"),
     xlab=paste("Diamètre à",c.max, "ans, en cm"),ylab="Densité")
rug(jitter((Ref max2.Diag.Asc1[,10]/(10*pi))))
                 Sélection diagonale ascendante, premier individu (pires)
# Représentation des individus
plot(as.numeric(as.character(Ref min2.Diag.Asc1$xx)),as.numeric(as.characte
r(Ref min2.Diag.Asc1$yy)),
     main="Pires individus sélectionnés, balayage diagonal ascendant,
premier individu",
     xlab ="Coordonnée xx" ,
     ylab = "Coordonnée yy")
# Temps d'élagage
stop.elagage (Ref min2.Diag.Asc1, h.min, h.max, lim.an=10, lim.pourc=0.80)
text(22,35,"Diag.A 1er ind., min")
stop.elagage (Ref min2.Diag.Asc1, h.min, h.max, lim.an=20, lim.pourc=0.70)
text(22,35,"Diag.A 1er ind., min")
stop.elagage (Ref min2.Diag.Asc1, h.min, h.max, lim.an=20, lim.pourc=0.80)
text(22,35,"Diag.A 1er ind., min")
# Diamètre à l'année de la colonne 10
hist((Ref min2.Diag.Asc1[,10]/(10*pi)), freq=F, breaks="Sturges",
     main = paste("Histogramme du diamètre à",c.max,"ans pour
Ref min2.Diag.Asc1"),
     xlab=paste("Diamètre à",c.max, "ans, en cm"), ylab="Densité")
rug(jitter((Ref min2.Diag.Asc1[,10]/(10*pi))))
               Sélection diagonale ascendante, second individu (meilleurs)
# Représentation des individus
plot(as.numeric(as.character(Ref max2.Diag.Asc2$xx)),as.numeric(as.characte
r(Ref max2.Diag.Asc2$yy)),
     main="Meilleurs individus sélectionnés, balayage diagonal ascendant,
deuxième individu",
```

xlab = "Coordonnée xx",

```
ylab = "Coordonnée yy")
# Temps d'élagage
stop.elagage (Ref max2.Diag.Asc2, h.min, h.max, lim.an=10, lim.pourc=0.80)
text(22,35,"Diag.A 2ème ind., max")
stop.elagage(Ref max2.Diag.Asc2,h.min,h.max,lim.an=20,lim.pourc=0.70)
text(22,35,"Diag.A 2ème ind., max")
stop.elagage (Ref max2.Diag.Asc2, h.min, h.max, lim.an=20, lim.pourc=0.80)
text(22,35,"Diag.A 2ème ind., max")
# Diamètre à l'année de la colonne 10
hist((Ref max2.Diag.Asc2[,10]/(10*pi)), freq=F, breaks="Sturges",
     main = paste("Histogramme du diamètre à", c.max, "ans pour
Ref max2.Diag.Asc2"),
     xlab=paste("Diamètre à",c.max,"ans, en cm"),ylab="Densité")
rug(jitter((Ref max2.Diag.Asc2[,10]/(10*pi))))
                 Sélection diagonale ascendante, second individu (pires)
# Représentation des individus
plot(as.numeric(as.character(Ref min2.Diag.Asc2$xx)),as.numeric(as.characte
r(Ref min2.Diag.Asc2$yy)),
     main="Pires individus sélectionnés, balayage diagonal ascendant,
deuxième individu",
     xlab = "Coordonnée xx",
     ylab = "Coordonnée yy")
# Temps d'élagage
stop.elagage (Ref min2.Diag.Asc2, h.min, h.max, lim.an=10, lim.pourc=0.80)
text(22,35,"Diag.A 2ème ind., min")
stop.elagage (Ref min2.Diag.Asc2, h.min, h.max, lim.an=20, lim.pourc=0.70)
text(22,35,"Diag.A 2ème ind., min")
stop.elagage(Ref min2.Diag.Asc2, h.min, h.max, lim.an=20, lim.pourc=0.80)
text(22,35,"Diag.A 2ème ind., min")
# Diamètre à l'année de la colonne 10
hist((Ref min2.Diag.Asc2[,10]/(10*pi)), freq=F, breaks="Sturges",
     main = paste("Histogramme du diamètre à", c.max, "ans pour
Ref min2.Diag.Asc2"),
     xlab=paste("Diamètre à",c.max,"ans, en cm"),ylab="Densité")
rug(jitter((Ref min2.Diag.Asc2[,10]/(10*pi))))
dev.off()
```

Annexe 13 : Code pour les sorties graphiques des tirages aléatoires

```
pdf (paste ("Graphique", PARCELLE, "Tirages.pdf"))
# Histogramme fréquence des volumes de bois par direction regroupés par
catégorie
x.min \leftarrow floor(Vol50.min.max[1,1]/5)*5
x.max < -ceiling((Vol50.min.max[1,2]+5)/5)*5
histo.Cat(V="A", x.min, x.max, y.max=20, ensemble=TRUE)
x.min<-floor(Vol50.min.max[2,1]/10)*10</pre>
x.max < -ceiling((Vol50.min.max[2,2]+5)/5)*5
histo.Cat(V="B", x.min, x.max, y.max=20, pas=0.2, ensemble=TRUE)
x.min < -floor((min(Vol50.min.max[3,1], Vol50.min.max[3,2])+5)/5)*5
x.max<-ceiling((max(Vol50.min.max[3,1],Vol50.min.max[3,2]))/5)*5
histo.Cat(V="C", x.min, x.max, y.max=20, pas=0.2, ensemble=TRUE)
x.min < -floor(min(Vol50.min.max[4,1], Vol50.min.max[4,2])/2)*2
x.max < -ceiling((max(Vol50.min.max[4,1], Vol50.min.max[4,2]))/2)*2
histo.Cat(V="D",x.min,x.max,y.max=20,pas=0.1,ensemble=TRUE)
x.min < -floor(Vol50.min.max[5,1]/5)*5
x.max < -ceiling((Vol50.min.max[5,2]+5)/5)*5
histo.Cat(V="T", x.min, x.max, y.max=25, ensemble=TRUE)
dev.off()
```

Annexe 14 : Code pour les sorties graphiques des tirages compilés

```
pdf(paste("Graphique", PARCELLE, "Compilation.pdf"))
xtt<-"Volume en m3"
ytt<-"Densité"
tt<-"Volume de bois Cat.A sur l'ensemble des directions"
x.min<-floor(Vol50.min.max[1,1]/5)*5</pre>
x.max < -ceiling((Vol50.min.max[1,2]+5)/5)*5
histo(z=Vol50.Cat[,1], V.min=Vol50.min.max[1,1], V.max=Vol50.min.max[1,2], tt,
xtt, ytt, Freq=FALSE,
               x.min, x.max, pas=0.2)
tt<-"Volume de bois Cat.B sur l'ensemble des directions"
x.min<-floor(Vol50.min.max[2,1]/10)*10
x.max < -ceiling((Vol50.min.max[2,2]+5)/5)*5
\label{linear_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_contin
xtt, ytt, Freq=FALSE,
               x.min, x.max, pas=0.1)
tt<-"Volume de bois Cat.C sur l'ensemble des directions"
x.min<-floor(Vol50.min.max[3,1]/10)*10
x.max < -ceiling((Vol50.min.max[3,2])/5)*5
histo(z=Vol50.Cat[,3], V.min=Vol50.min.max[3,1], V.max=Vol50.min.max[3,2], tt,
xtt, ytt, Freq=FALSE,
               x.min, x.max, pas=0.1)
tt<-"Volume de bois Cat.D sur l'ensemble des directions"
x.min \leftarrow floor(Vol50.min.max[4,1]/2)*2
x.max < -ceiling((Vol50.min.max[4,2]+2)/2)*2
histo(z=Vol50.Cat[,4], V.min=Vol50.min.max[4,1], V.max=Vol50.min.max[4,2], tt,
xtt, ytt, Freq=FALSE,
               x.min, x.max, pas=0.1)
tt<-"Volume de bois Total sur l'ensemble des directions"
x.min < -floor(Vol50.min.max[5,1]/5)*5
x.max < -ceiling((Vol50.min.max[5,2]+5)/5)*5
histo(z=Vol50.Cat[,5], V.min=Vol50.min.max[5,1], V.max=Vol50.min.max[5,2], tt,
xtt, ytt, Freq=FALSE,
               x.min, x.max, pas=0.2)
dev.off()
```

Annexe 15 : Code pour créer le tableau récapitulatif

```
# package nécessaire : xlsx
library("xlsx") # pour sortie excel
# Prix du bois selon la catégorie
Prix<-c(260,100,30,15)
# Les différentes catégories de bois
Cat<-c("Cat.A", "Cat.B", "Cat.C", "Cat.D", "Total")</pre>
# Les différentes directions traitées
Direction<-
c("Horiz1", "Horiz2", "Verti1", "Verti2", "Diag.Desc1", "Diag.Desc2", "Diag.Asc1"
,"Diag.Asc2","Compilé")
# colonne 1 : la catégorie de bois
# colonne 2 : la direction de sélection
# colonne 3 : le nombre de plants (= au nombre de couple) concernés par
cette sélection
# colonne 4 : le diamètre moyen de tous les plants sélectionnés par cette
direction
# colonne 5 : le nombre de plants moyen qui attendront les 35 cm de
diamètre (plants avec potentiel)
# colonne 6 : le pourcentage que ce nombre de plants (colonne 5) représente
par rapport à une sélection
# colonne 7 : le diamètre moyen de tous les plants avec potentiel
sélectionnés
# colonne 8 : le volume si sélection des pires plants
# colonne 9 : le pourcentage que ce volume (colonne 8) représente par
rapport au volume total
# colonne 10 : le pourcentage de plants qui contribus à la catégorie en
question (si sélection des pires plants)
# colonne 11 : le pourcentage de plants qui contribus à la catégorie en
question (si sélection aléatoire == pas de densification)
# colonne 12 : le volume si sélection des meilleurs plants
# colonne 13 : le pourcentage que ce volume (colonne 12) représente par
rapport au volume total
# colonne 14 : le pourcentage de plants qui contribus à la catégorie en
question (si sélection des meilleurs plants)
# colonne 15 : le volume pour 50 arbres si sélection des pires plants
# colonne 16 : le volume pour 50 arbres si sélection des meilleurs plants
# colonne 17 : l'écart entre le volume obtenu grâce aux meilleurs plants et
celui obtenu grâce aux pires pants
# colonne 18 : le volume moyen pour 50 arbres (à partir des 800 tirages)
# colonne 19 : le rapport entre le volume pour 50 pieds si pires plants et
le volume moyen pour 50 pieds (en pourcentage)
# colonne 20 : le rapport entre le volume pour 50 pieds si meilleurs plants
et le volume moyen pour 50 pieds (en pourcentage)
# colonne 21 : le revenu obtenu si sélection des pires plants
# colonne 22 : le revenu pour les volumes moyens obtenu
# colonne 23 : le revenu obtenu si sélection des meilleurs plants
                       Sélection horizontale, premier individu
```

```
Dir=rep(Direction[1],5)
nb.plants=rep(nrow(Ref_max2.Horiz1),5)
D.moy=rep(mean(diam.moyen[1:100,]),5)
nb.pot=rep(mean(nb.pot.all[1:100,]),5)
P.pot=round(rep(mean(nb.pot.all[1:100,])*100/nrow(Ref_max2.Horiz1),5))
D.pot.moy=rep(mean(diam.moyen.pot[1:100,]),5)
Ref.min<-round(Vol Min40.Horiz1[1,],digits=1)</pre>
```

```
P.Ref.min<-round(Vol Min40.Horiz1[2,])</pre>
P.ind.min<-ind.in.Cat(Ref min2.Horiz1)[2,]
P.ind.moy=Prop.ind.Cat[c(1, 10, 19, 28, 37),]
Ref.max<-round(Vol Max40.Horiz1[1,],digits=1)</pre>
P.Ref.max<-round(Vol Max40.Horiz1[2,])
P.ind.max=ind.in.Cat(Ref max2.Horiz1)[2,]
Ref.min50<-round(Vol50.Min.Horiz1, digits=1)
Ref.max50<-round(Vol50.Max.Horiz1, digits=1)</pre>
plage<-Plage(t(rbind(Ref.min50, Ref.max50)))</pre>
V50<-round(apply(Vol50.Tirage.Horiz1[,1:5],MARGIN=2,FUN=mean),digits=1)
Ref50.min<-round((Ref.min50/V50)*100)</pre>
Ref50.max<-round((Ref.max50/V50)*100)</pre>
revenu.min<-round(c(Ref.min50[1:4]*Prix,sum(Ref.min50[1:4]*Prix)))
revenu<-round(c(V50[1:4]*Prix, sum(V50[1:4]*Prix)))
revenu.max<-round(c(Ref.max50[1:4]*Prix, sum(Ref.max50[1:4]*Prix)))</pre>
t1 <-data.frame(Cat, Dir, nb.plants,
                 D.moy, nb.pot, P.pot, D.pot.moy,
                 Ref.min, P.Ref.min, P.ind.min,
                 P.ind.moy,
                 Ref.max, P.Ref.max, P.ind.max,
                 Ref.min50, Ref.max50, plage, V50, Ref50.min, Ref50.max,
                revenu.min, revenu, revenu.max)
rownames (t1) <- Cat
                         Sélection horizontale, second individu
Dir=rep(Direction[2],5)
nb.plants=rep(nrow(Ref max2.Horiz2),5)
D.moy=rep (mean (diam.moyen [101:200,]),5)
nb.pot=rep(mean(nb.pot.all[101:200,]),5)
P.pot=round(rep(mean(nb.pot.all[101:200,])*100/nrow(Ref max2.Horiz2),5))
D.pot.moy<-rep (mean (diam.moyen.pot[101:200,]),5)</pre>
Ref.min<-round(Vol Min40.Horiz2[1,],digits=1)</pre>
P.Ref.min<-round(Vol Min40.Horiz2[2,])
P.ind.min=ind.in.Cat(Ref min2.Horiz2)[2,]
P.ind.moy=Prop.ind.Cat[c(2,11,20,29,38),]
Ref.max<-round(Vol Max40.Horiz2[1,],digits=1)</pre>
P.Ref.max<-round(Vol Max40.Horiz1[2,])
P.ind.max=ind.in.Cat(Ref max2.Horiz2)[2,]
Ref.min50<-round(Vol50.Min.Horiz2, digits=1)</pre>
Ref.max50<-round(Vol50.Max.Horiz2,digits=1)</pre>
plage<-Plage(t(rbind(Ref.min50, Ref.max50)))</pre>
V50<-round(apply(Vol50.Tirage.Horiz2[,1:5],MARGIN=2,FUN=mean),digits=1)
Ref50.min<-round((Ref.min50/V50)*100)
Ref50.max<-round((Ref.max50/V50)*100)
revenu.min<-round(c(Ref.min50[1:4]*Prix,sum(Ref.min50[1:4]*Prix)))
```

revenu.max<-round(c(Ref.max50[1:4]*Prix,sum(Ref.max50[1:4]*Prix)))

revenu<-round(c(V50[1:4]*Prix, sum(V50[1:4]*Prix)))

Sélection verticale, premier individu

```
Dir<-rep(Direction[3],5)</pre>
nb.plants<-rep(nrow(Ref max2.Verti1),5)</pre>
D.moy<-rep (mean (diam.moyen [201:300,]),5)</pre>
nb.pot<-rep(mean(nb.pot.all[201:300,]),5)
P.pot<-round(rep(mean(nb.pot.all[201:300,])*100/nrow(Ref max2.Verti1),5))
D.pot.moy<-rep(mean(diam.moyen.pot[201:300,]),5)</pre>
Ref.min<-round(Vol Min40.Verti1[1,],digits=1)</pre>
P.Ref.min<-round(Vol Min40.Verti1[2,])</pre>
P.ind.min<-ind.in.Cat (Ref min2.Verti1)[2,]
P.ind.moy<-Prop.ind.Cat[c(3, 12, 21, 30, 39),]
Ref.max<-round(Vol Max40.Verti1[1,],digits=1)</pre>
P.Ref.max<-round(Vol Max40.Verti1[2,])
P.ind.max<-ind.in.Cat(Ref max2.Verti1)[2,]
Ref.min50<-round(Vol50.Min.Verti1, digits=1)</pre>
Ref.max50<-round(Vol50.Max.Verti1, digits=1)</pre>
plage<-Plage(t(rbind(Ref.min50, Ref.max50)))</pre>
V50<-round(apply(Vol50.Tirage.Verti1[,1:5],MARGIN=2,FUN=mean),digits=1)
Ref50.min<-round((Ref.min50/V50)*100)</pre>
Ref50.max<-round((Ref.max50/V50)*100)
revenu.min<-round(c(Ref.min50[1:4]*Prix,sum(Ref.min50[1:4]*Prix)))
revenu<-round(c(V50[1:4]*Prix, sum(V50[1:4]*Prix)))
revenu.max<-round(c(Ref.max50[1:4]*Prix, sum(Ref.max50[1:4]*Prix)))</pre>
t3 <-data.frame(Cat, Dir, nb.plants,
                 D.moy, nb.pot, P.pot, D.pot.moy,
                 Ref.min, P. Ref.min, P. ind.min,
                 P.ind.moy,
                 Ref.max, P.Ref.max, P.ind.max,
                 Ref.min50, Ref.max50, plage, V50, Ref50.min, Ref50.max,
                 revenu.min, revenu, revenu.max)
rownames(t3)<-Cat</pre>
                          Sélection verticale, second individu
Dir<-rep(Direction[4],5)</pre>
nb.plants<-rep(nrow(Ref max2.Verti2),5)</pre>
D.moy<-rep (mean (diam.moyen [301:400,]),5)</pre>
nb.pot<-rep(mean(nb.pot.all[301:400,]),5)
Pourc.pot<-
round (rep (mean (nb.pot.all[301:400,]) *100/nrow (Ref max2.Verti2),5))
D.pot.moy<-rep (mean (diam.moyen.pot[301:400,]),5)</pre>
Ref.min<-round(Vol Min40.Verti2[1,],digits=1)</pre>
P.Ref.min<-round(Vol Min40.Verti2[2,])
P.ind.min<-ind.in.Cat(Ref min2.Verti2)[2,]
P.ind.moy<-Prop.ind.Cat[c(4,13,22,31,40),]
Ref.max<-round(Vol Max40.Verti2[1,],digits=1)</pre>
P.Ref.max<-round(Vol Max40.Verti2[2,])
P.ind.max<-ind.in.Cat(Ref max2.Verti2)[2,]
Ref.min50<-round(Vol50.Min.Verti2, digits=1)</pre>
Ref.max50<-round(Vol50.Max.Verti2, digits=1)</pre>
plage<-Plage(t(rbind(Ref.min50, Ref.max50)))</pre>
V50<-round(apply(Vol50.Tirage.Verti2[,1:5],MARGIN=2,FUN=mean),digits=1)
Ref50.min<-round((Ref.min50/V50)*100)
Ref50.max<-round((Ref.max50/V50)*100)
revenu.min<-round(c(Ref.min50[1:4]*Prix, sum(Ref.min50[1:4]*Prix)))
revenu<-round(c(V50[1:4]*Prix, sum(V50[1:4]*Prix)))
revenu.max<-round(c(Ref.max50[1:4]*Prix,sum(Ref.max50[1:4]*Prix)))
t4 <-data.frame(Cat, Dir, nb.plants,
```

```
D.moy, nb.pot, P.pot, D.pot.moy,
Ref.min, P.Ref.min, P.ind.min,
P.ind.moy,
Ref.max, P.Ref.max, P.ind.max,
Ref.min50, Ref.max50, plage, V50, Ref50.min, Ref50.max,
revenu.min, revenu, revenu.max)

rownames (t4) <- Cat

Sélection diagonale descendante, premier individu

Dir <- rep (Direction [5], 5)
```

```
nb.plants<-rep(nrow(Ref max2.Diag.Desc1),5)</pre>
D.moy<-rep (mean (diam.moyen [401:500,]),5)</pre>
nb.pot<-rep(mean(nb.pot.all[401:500,]),5)
P.pot<-
round(rep(mean(nb.pot.all[401:500,])*100/nrow(Ref max2.Diag.Desc1),5))
D.pot.moy<-rep (mean (diam.moyen.pot[401:500,]),5)</pre>
Ref.min<-round(Vol Min40.Diag.Desc1[1,],digits=1)</pre>
P.Ref.min<-round(Vol Min40.Diag.Desc1[2,])
P.ind.min<-ind.in.Cat(Ref min2.Diag.Desc1)[2,]
P.ind.moy<-Prop.ind.Cat[c(5,14,23,32,41),]
Ref.max<-round(Vol Max40.Diag.Desc1[1,],digits=1)</pre>
P.Ref.max<-round(Vol Max40.Diag.Desc1[2,])
P.ind.max<-ind.in.Cat(Ref max2.Diag.Desc1)[2,]
Ref.min50<-round(Vol50.Min.Diag.Desc1, digits=1)</pre>
Ref.max50<-round(Vol50.Max.Diag.Desc1, digits=1)</pre>
plage<-Plage(t(rbind(Ref.min50, Ref.max50)))</pre>
V50<-round(apply(Vol50.Tirage.Diag.Desc1[,1:5],MARGIN=2,FUN=mean),digits=1)
Ref50.min<-round((Ref.min50/V50)*100)</pre>
Ref50.max<-round((Ref.max50/V50)*100)</pre>
revenu.min<-round(c(Ref.min50[1:4]*Prix,sum(Ref.min50[1:4]*Prix)))
revenu<-round(c(V50[1:4]*Prix, sum(V50[1:4]*Prix)))
revenu.max<-round(c(Ref.max50[1:4]*Prix,sum(Ref.max50[1:4]*Prix)))
t5 <-data.frame(Cat, Dir, nb.plants,
                 D.moy, nb.pot, P.pot, D.pot.moy,
                 Ref.min, P. Ref.min, P. ind.min,
                 P.ind.moy,
                 Ref.max, P.Ref.max, P.ind.max,
                 Ref.min50, Ref.max50, plage, V50, Ref50.min, Ref50.max,
                 revenu.min, revenu, revenu.max)
rownames(t5)<-Cat
```

Sélection diagnale descendante, second individu

```
Dir<-rep(Direction[6],5)</pre>
nb.plants<-rep(nrow(Ref max2.Diag.Desc2),5)</pre>
D.moy<-rep (mean (diam.moyen [501:600,]),5)
nb.pot<-rep(mean(nb.pot.all[501:600,]),5)</pre>
P.pot<-
round(rep(mean(nb.pot.all[501:600,])*100/nrow(Ref max2.Diag.Desc2),5))
D.pot.moy<-rep (mean (diam.moyen.pot[501:600,]),5)</pre>
Ref.min<-round(Vol Min40.Diag.Desc2[1,],digits=1)</pre>
P.Ref.min<-round(Vol Min40.Diag.Desc2[2,])
P.ind.min<-ind.in.Cat(Ref min2.Diag.Desc2)[2,]
P.ind.moy<-Prop.ind.Cat[c(6,15,24,33,42),]
Ref.max<-round(Vol Max40.Diag.Desc2[1,],digits=1)</pre>
P.Ref.max<-round(Vol Max40.Diag.Desc2[2,])
P.ind.max<-ind.in.Cat(Ref max2.Diag.Desc2)[2,]
Ref.min50<-round(Vol50.Min.Diag.Desc2, digits=1)</pre>
Ref.max50<-round(Vol50.Max.Diag.Desc2, digits=1)</pre>
```

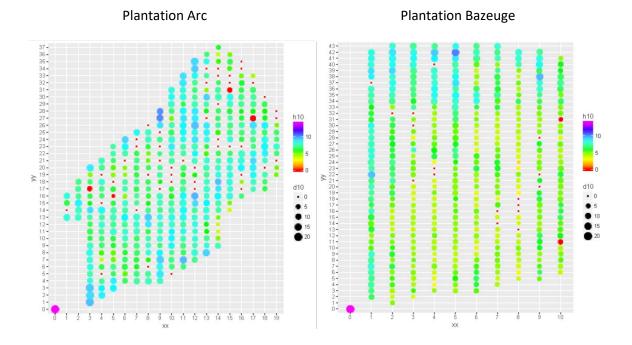
```
plage<-Plage(t(rbind(Ref.min50, Ref.max50)))</pre>
V50<-round(apply(Vol50.Tirage.Diag.Desc2[,1:5],MARGIN=2,FUN=mean),digits=1)
Ref50.min<-round((Ref.min50/V50) *100)
Ref50.max<-round((Ref.max50/V50)*100)</pre>
revenu.min<-round(c(Ref.min50[1:4]*Prix,sum(Ref.min50[1:4]*Prix)))
revenu<-round(c(V50[1:4]*Prix, sum(V50[1:4]*Prix)))
revenu.max<-round(c(Ref.max50[1:4]*Prix,sum(Ref.max50[1:4]*Prix)))</pre>
t6 <-data.frame(Cat, Dir, nb.plants,
                 D.moy, nb.pot, P.pot, D.pot.moy,
                 Ref.min, P. Ref.min, P. ind.min,
                 P.ind.moy,
                 Ref.max, P.Ref.max, P.ind.max,
                 Ref.min50, Ref.max50, plage, V50, Ref50.min, Ref50.max,
                 revenu.min, revenu, revenu.max)
rownames (t6) <- Cat
                     Sélection diagonale ascendante, premier individu
Dir<-rep(Direction[7],5)</pre>
nb.plants<-rep(nrow(Ref max2.Diag.Asc1),5)
D.moy<-rep (mean (diam.moyen [601:700,]),5)
nb.pot<-rep(mean(nb.pot.all[601:700,]),5)</pre>
P.pot<-
round (rep (mean (nb.pot.all [601:700,]) *100/nrow (Ref max2.Diag.Asc1),5))
D.pot.moy<-rep (mean (diam.moyen.pot[601:700,]),5)</pre>
Ref.min<-round(Vol Min40.Diag.Asc1[1,],digits=1)</pre>
P.Ref.min<-round(Vol Min40.Diag.Asc1[2,])
P.ind.min<-ind.in.Cat(Ref min2.Diag.Asc1)[2,]
P.ind.moy<-Prop.ind.Cat[c(7,16,25,34,43),]
Ref.max<-round(Vol Max40.Diag.Asc1[1,], digits=1)</pre>
P.Ref.max<-round(Vol Max40.Diag.Asc1[2,])
P.ind.max<-ind.in.Cat(Ref max2.Diag.Asc1)[2,]
Ref.min50<-round(Vol50.Min.Diag.Asc1, digits=1)</pre>
Ref.max50<-round(Vol50.Max.Diag.Asc1, digits=1)</pre>
plage<-Plage(t(rbind(Ref.min50, Ref.max50)))</pre>
V50<-round(apply(Vol50.Tirage.Diag.Asc1[,1:5],MARGIN=2,FUN=mean),digits=1)
Ref50.min<-round((Ref.min50/V50)*100)</pre>
Ref50.max<-round((Ref.max50/V50)*100)</pre>
revenu.min<-round(c(Ref.min50[1:4]*Prix,sum(Ref.min50[1:4]*Prix)))
revenu<-round(c(V50[1:4]*Prix, sum(V50[1:4]*Prix)))
revenu.max<-round(c(Ref.max50[1:4]*Prix,sum(Ref.max50[1:4]*Prix)))
t7 <-data.frame(Cat, Dir, nb.plants,
                 D.moy, nb.pot, P.pot, D.pot.moy,
                 Ref.min, P.Ref.min, P.ind.min,
                 P.ind.mov.
                 Ref.max, P.Ref.max, P.ind.max,
                 Ref.min50, Ref.max50, plage, V50, Ref50.min, Ref50.max,
                 revenu.min, revenu, revenu.max)
rownames (t7) <- Cat
                     Sélection diagonale ascendante, second individu
Dir<-rep(Direction[8],5)</pre>
nb.plants<-rep(nrow(Ref max2.Diag.Asc2),5)</pre>
D.moy<-rep (mean (diam.moyen [701:800,]),5)
nb.pot<-rep(mean(nb.pot.all[701:800,]),5)
P.pot<-
round(rep(mean(nb.pot.all[701:800,])*100/nrow(Ref max2.Diag.Asc2),5))
D.pot.moy<-rep (mean (diam.moyen.pot[701:800,]),5)</pre>
```

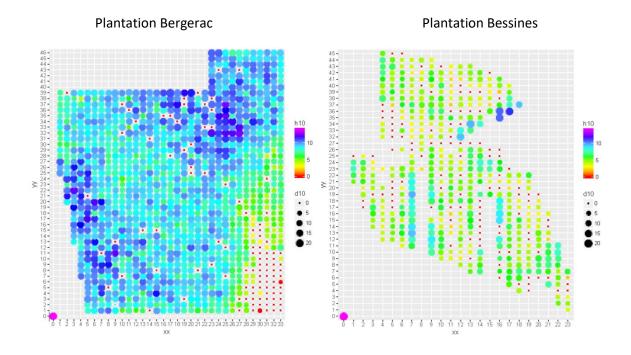
```
Ref.min<-round(Vol Min40.Diag.Asc2[1,], digits=1)</pre>
P.Ref.min<-round(Vol Min40.Diag.Asc2[2,])
P.ind.min<-ind.in.Cat(Ref min2.Diag.Asc2)[2,]
P.ind.moy<-Prop.ind.Cat[c(8,17,26,35,44),]
Ref.max<-round(Vol Max40.Diag.Asc2[1,],digits=1)</pre>
P.Ref.max<-round(Vol Max40.Diag.Asc2[2,])
P.ind.max<-ind.in.Cat(Ref max2.Diag.Asc2)[2,]
Ref.min50<-round(Vol50.Min.Diag.Asc2, digits=1)</pre>
Ref.max50<-round(Vol50.Max.Diag.Asc2, digits=1)</pre>
plage<-Plage(t(rbind(Ref.min50, Ref.max50)))</pre>
V50<-round(apply(Vol50.Tirage.Diag.Asc2[,1:5],MARGIN=2,FUN=mean),digits=1)
Ref50.min<-round((Ref.min50/V50)*100)</pre>
Ref50.max<-round((Ref.max50/V50)*100)</pre>
revenu.min<-round(c(Ref.min50[1:4]*Prix,sum(Ref.min50[1:4]*Prix)))
revenu<-round(c(V50[1:4]*Prix, sum(V50[1:4]*Prix)))
revenu.max<-round(c(Ref.max50[1:4]*Prix,sum(Ref.max50[1:4]*Prix)))</pre>
t8 <-data.frame(Cat, Dir, nb.plants,
                 D.moy, nb.pot, P.pot, D.pot.moy,
                 Ref.min, P.Ref.min, P.ind.min,
                 P.ind.moy,
                 Ref.max, P.Ref.max, P.ind.max,
                 Ref.min50, Ref.max50, plage, V50, Ref50.min, Ref50.max,
                 revenu.min, revenu, revenu.max)
rownames (t8) <- Cat
```

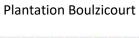
Compilation des données

```
Dir<-rep(Direction[9],5)</pre>
nb.plants<-rep(nb.arbres, 5)</pre>
D.moy<-rep(NA, 5)
nb.pot \leftarrow rep(NA, 5)
P.pot<-rep(NA, 5)
D.pot.moy<-rep(NA, 5)
Ref.min<-rep(NA, 5)</pre>
P.Ref.min<-rep(NA,5)
P.ind.min<-rep(NA, 5)
P.ind.moy<-rep(NA, 5)
Ref.max<-rep(NA, 5)</pre>
P.Ref.max<-rep(NA, 5)
P.ind.max<-rep(NA, 5)
Ref.min50<-round(Vol50.min.max[,1],digits=1)</pre>
Ref.max50<-round(Vol50.min.max[,2],digits=1)</pre>
plage<-Plage(t(rbind(Ref.min50, Ref.max50)))</pre>
V50<-round(apply(Vol50.Cat[,1:5],MARGIN=2,FUN=mean),digits=1)
Ref50.min<-round((Ref.min50/V50)*100)
Ref50.max<-round((Ref.max50/V50)*100)
revenu.min<-rep(NA, 5)
revenu.max<-rep(NA, 5)
revenu<-rep(NA,5)
t9 <-data.frame(Cat, Dir, nb.plants,
                  D.moy, nb.pot, P.pot, D.pot.moy,
                  Ref.min, P.Ref.min, P.ind.min,
                  P.ind.moy,
                  Ref.max, P.Ref.max, P.ind.max,
                  Ref.min50, Ref.max50, plage, V50, Ref50.min, Ref50.max,
                  revenu.min, revenu, revenu.max)
rownames (t9) <- Cat
```

Fusion des différents tableaux : tableau récapitulatif

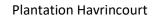

```
L<-list(t1, t2, t3, t4, t5, t6, t7, t8, t9)
Tab.recap<-matrix(data=NA, nrow=45, ncol=23)</pre>
Tab.recap<-as.data.frame(Tab.recap)</pre>
for (i in 1:9)
  B<-L[[i]]
  for (j in 1:5)
    Tab.recap[((j-1)*9)+i,]<-B[j,]
  }
for (j in 0:4)
  Tab.recap[(9*(j+1)), c(6,10,11,14,22)]<-
round(apply(Tab.recap[(9*j+1):(9*j+8),c(6,10,11,14,22)],MARGIN=2,FUN=mean))
  Tab.recap[(9*(j+1)), c(4,7)]<-
round (apply (Tab.recap[(9*j+1):(9*j+8),c(4,7)], MARGIN=2, FUN=mean), digits=1)
  Tab.recap[(9*(j+1)), 5]<-Tab.recap[(9*(j+1)), 6]*Tab.recap[(9*(j+1)), 3]/100
  Tab.recap[(9*(j+1)), 21]<-min(Tab.recap[((9*j+1)), (9*j+8)), 21])
  Tab.recap[(9*(j+1)), 23] <-max(Tab.recap[((9*j+1)) : (9*j+8)), 23])
}
colnames (Tab.recap) <-colnames (t1)</pre>
Tab.recap$Dir<-rep(Direction, 5)</pre>
Tab.recap$Cat<-
c(rep(Cat[1],9),rep(Cat[2],9),rep(Cat[3],9),rep(Cat[4],9),rep(Cat[5],9))
Tab.recap$D.moy<-round(Tab.recap$D.moy, digits=1)</pre>
Tab.recap$nb.pot<-round(Tab.recap$nb.pot)</pre>
Tab.recap$D.pot.moy<-round(Tab.recap$D.pot.moy, digits=1)
Tab.recap$Ref.min<-round(Tab.recap$Ref.min)</pre>
Tab.recap$Ref.max<-round(Tab.recap$Ref.max)</pre>
str(Tab.recap)
              Sélection de quelques données : tableau des données compilées
Dir=rep(Direction[9],5)
nb.plants=rep(nb.arbres, 5)
D.moy<-Tab.recap[c(9,18,27,36,45),4]
nb.pot<-Tab.recap[c(9,18,27,36,45),5]
D.pot.moy<-Tab.recap[c(9,18,27,36,45),7]
P.ind.min<-
round (c (mean (Tab.recap$P.ind.min[1:8]), mean (Tab.recap$P.ind.min[10:17]), mea
n (Tab.recap$P.ind.min[19:26]),
mean (Tab.recap$P.ind.min[28:35]), mean (Tab.recap$P.ind.min[37:44])))
P.ind.moy<-
round (c (mean (Tab.recap$P.ind.moy[1:8]), mean (Tab.recap$P.ind.moy[10:17]), mea
n(Tab.recap$P.ind.moy[19:26]),
mean (Tab.recap$P.ind.moy[28:35]), mean (Tab.recap$P.ind.moy[37:44])))
P.ind.max<-
round (c (mean (Tab.recap$P.ind.max[1:8]), mean (Tab.recap$P.ind.max[10:17]), mea
n(Tab.recap$P.ind.max[19:26]),
mean (Tab.recap$P.ind.max[28:35]), mean (Tab.recap$P.ind.max[37:44])))
Ref.min50<-round(Vol50.min.max[,1],digits=1)</pre>
Ref.max50<-round(Vol50.min.max[,2],digits=1)</pre>
plage<-Plage(Vol50.min.max)</pre>
```

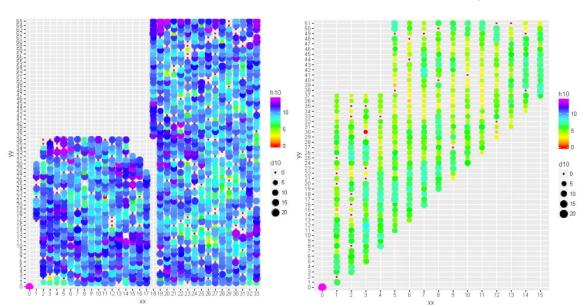

```
V50<-round(apply(Vol50.Cat[,1:5],MARGIN=2,FUN=mean),digits=1)
Ref50.min<-round((Ref.min50/V50)*100)
Ref50.max<-round((Ref.max50/V50)*100)</pre>
revenu.min<-round(c(Ref.min50[1:4]*Prix,min(Tab.recap$revenu.min[37:44])))
revenu<-round(c(V50[1:4]*Prix, sum(V50[1:4]*Prix)))
revenu.max<-round(c(Ref.max50[1:4]*Prix, max(Tab.recap$revenu.max[37:44])))
Ref.min550<-round(5*Vol50.min.max[,1],digits=1)</pre>
Ref.max550<-round(5*Vol50.min.max[,2],digits=1)</pre>
V550<-round(apply(5*Vol50.Cat[,1:5], MARGIN=2, FUN=mean), digits=1)
revenu5.min<-
round (c(Ref.min550[1:4]*Prix,5*min(Tab.recap$revenu.min[37:44])))
revenu5<-round(c(V550[1:4]*Prix, sum(V550[1:4]*Prix)))
revenu5.max<-
round(c(Ref.max550[1:4]*Prix,5*max(Tab.recap$revenu.max[37:44])))
Tab.compile <-data.frame(Cat, Dir,</pre>
                  nb.plants, D.moy, nb.pot, D.pot.moy,
                  P.ind.min, P.ind.max,
                  Ref.min50, Ref.max50, plage, V50, Ref50.min, Ref50.max,
                  revenu.min, revenu, revenu.max,
                  Ref.min550, Ref.max550, V550,
                  revenu5.min, revenu5, revenu5.max)
                         Exportation des tableaux dans excel
wb<-createWorkbook(type="xlsx") # Création du classeur</pre>
TITLE_STYLE <- CellStyle(wb)+ Font(wb, heightInPoints=16, color="blue",
isBold=TRUE, underline=1) # Style du titre
TITLE STYLE2 <- CellStyle(wb)+ Font(wb, heightInPoints=10, color="blue",
isBold=TRUE, underline=1)
sheet <- createSheet(wb, sheetName = paste("Tableaux", PARCELLE)) # Feuille</pre>
1 Excel TITRE
xlsx.addTitle(sheet, rowIndex=1, title=paste("Tableaux",
PARCELLE), titleStyle = TITLE STYLE)
addDataFrame(Tab.recap, sheet, startRow=3, startColumn=1)
sheet2 <- createSheet(wb, sheetName = paste(PARCELLE, "Compilé")) #création</pre>
d'une nouvelle feuille Excel
xlsx.addTitle(sheet2, rowIndex=1,
title=paste("Tableau", PARCELLE, "Compilé"), titleStyle = TITLE STYLE)
xlsx.addTitle(sheet2, rowIndex=3, title="Généralité", titleStyle =
TITLE STYLE2)
addDataFrame(Tab.compile[,1:8], sheet2, startRow=5, startColumn=1)
xlsx.addTitle(sheet2, rowIndex=15,
title=paste("Tableau", PARCELLE, "Compilé"), titleStyle = TITLE STYLE2)
addDataFrame(Tab.compile[,c(1,9:23)], sheet2, startRow=17, startColumn=1)
```


saveWorkbook(wb, paste("Tableaux", PARCELLE, ".xlsx")) #Enreqistrer le

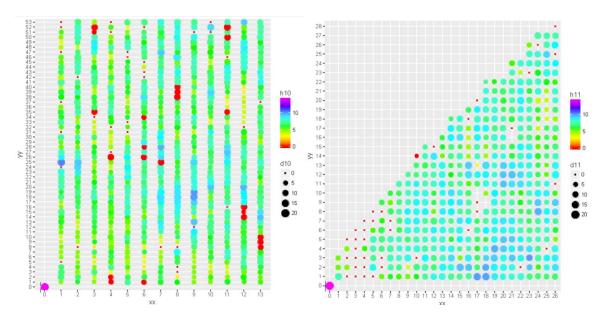
classeur Excel


Annexe 16 : Représentations graphiques des plantations

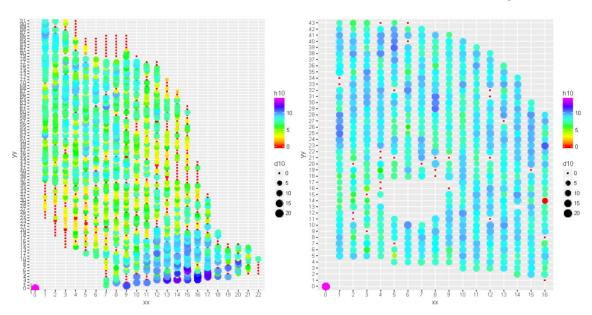




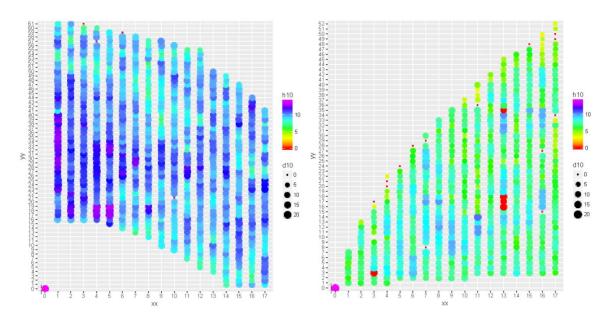
Plantation Douzy



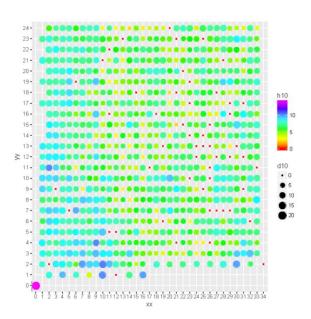
Plantation Lyons



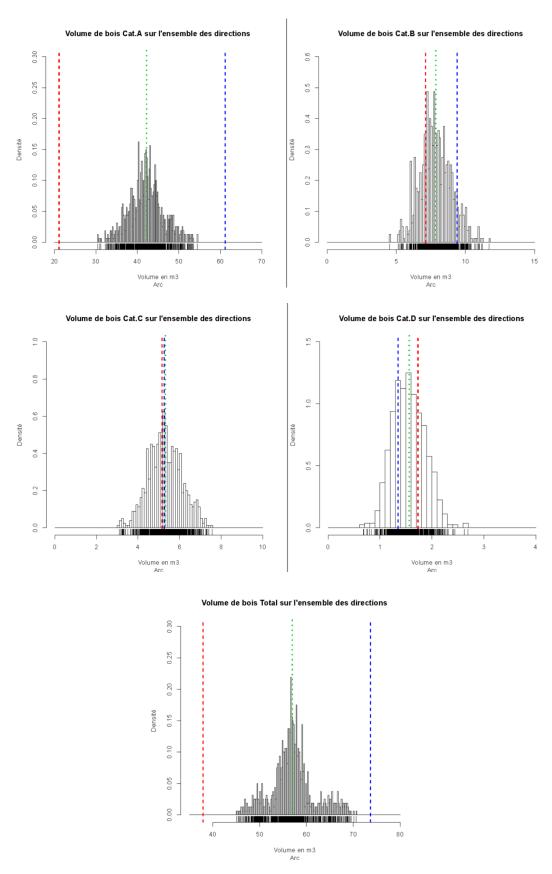
Plantation Pange


Plantation Saint-Martin

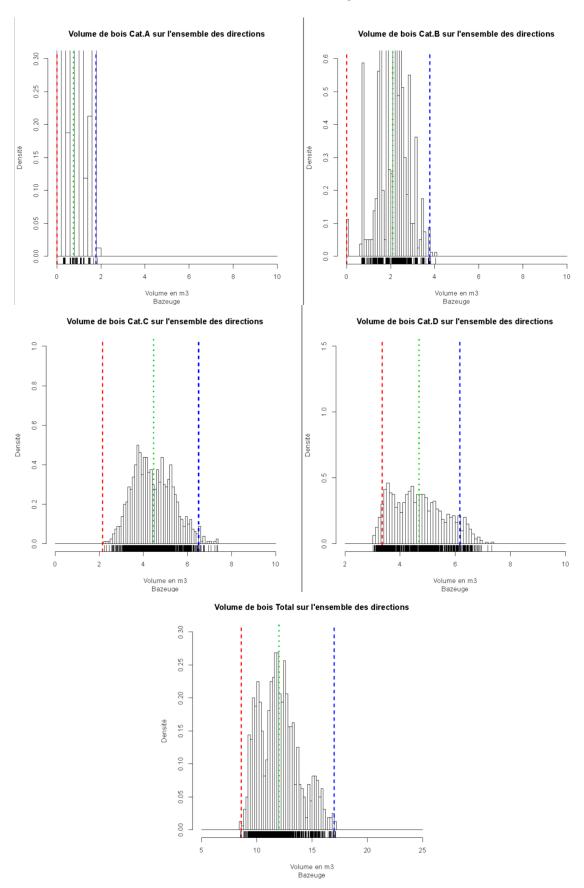
Plantation Sainte-Segrée



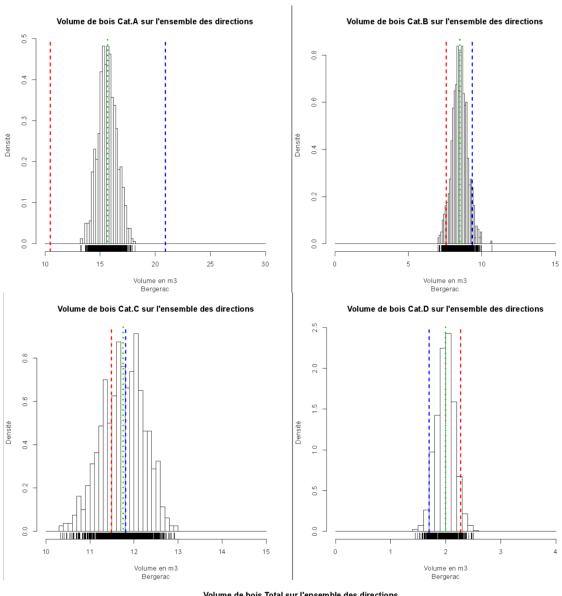
Plantation Soulaures

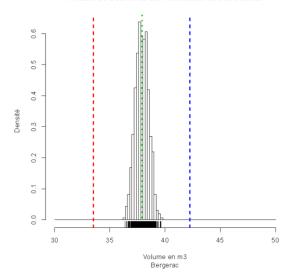


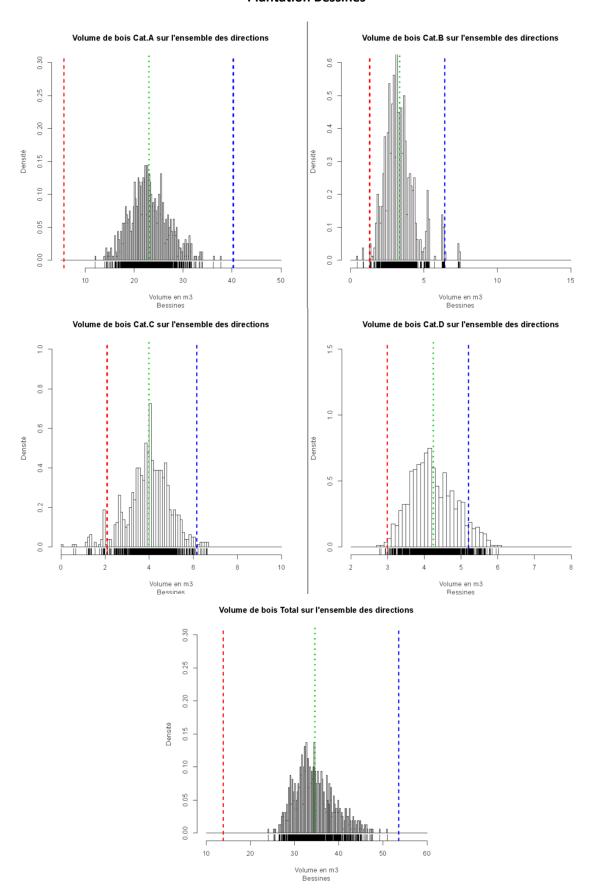
Plantation Us

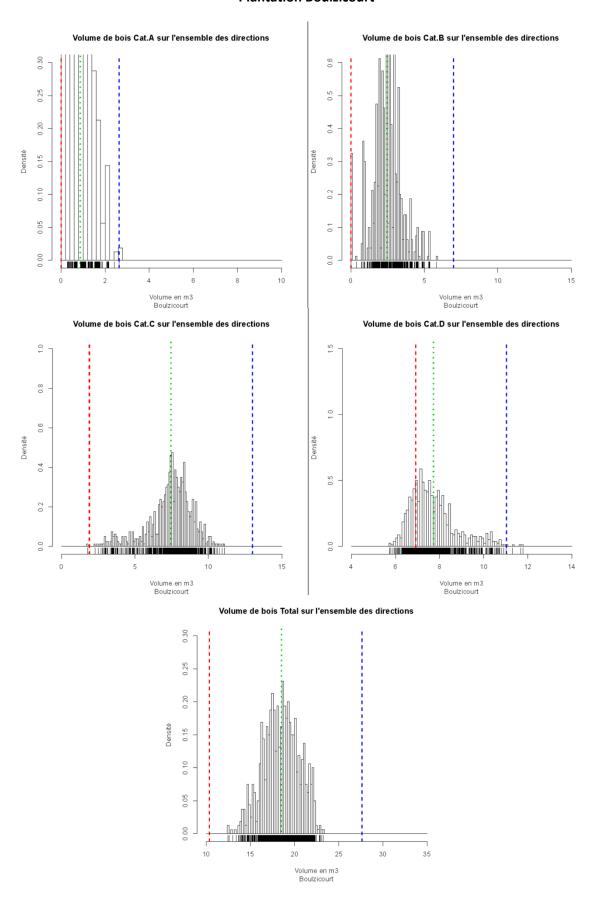


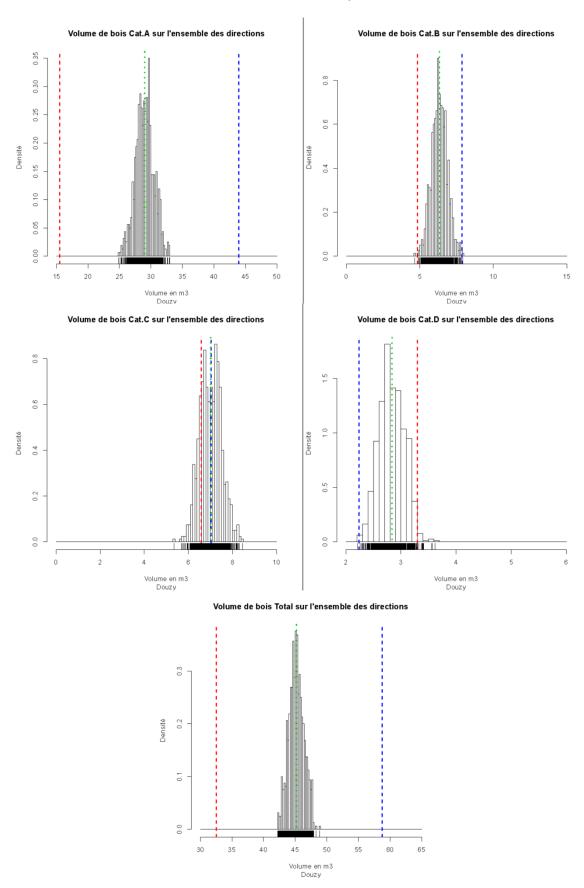
Annexe 17 : Histogrammes par catégorie de bois du volume de bois à 40 ans selon les plantations en combinant toutes les directions de sélection

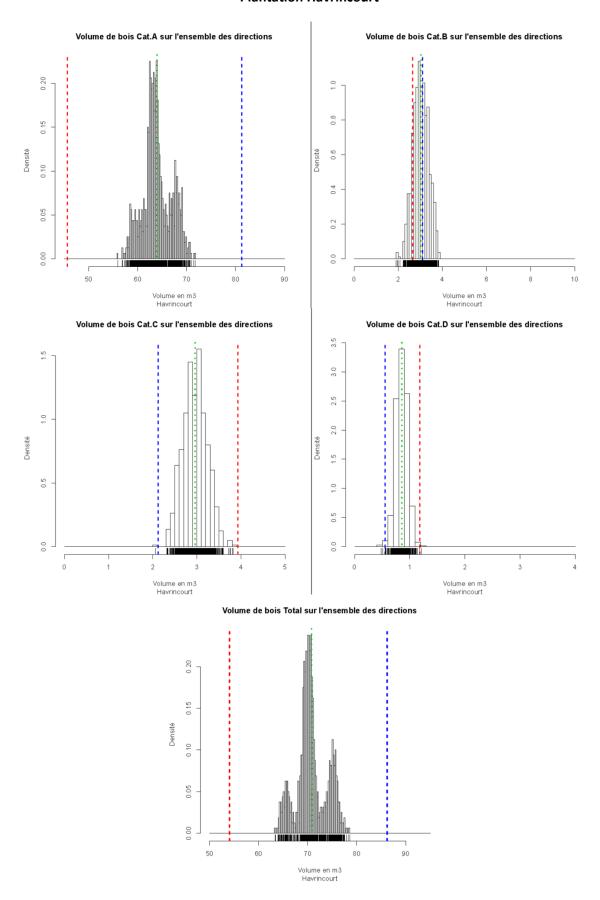

Plantation Arc

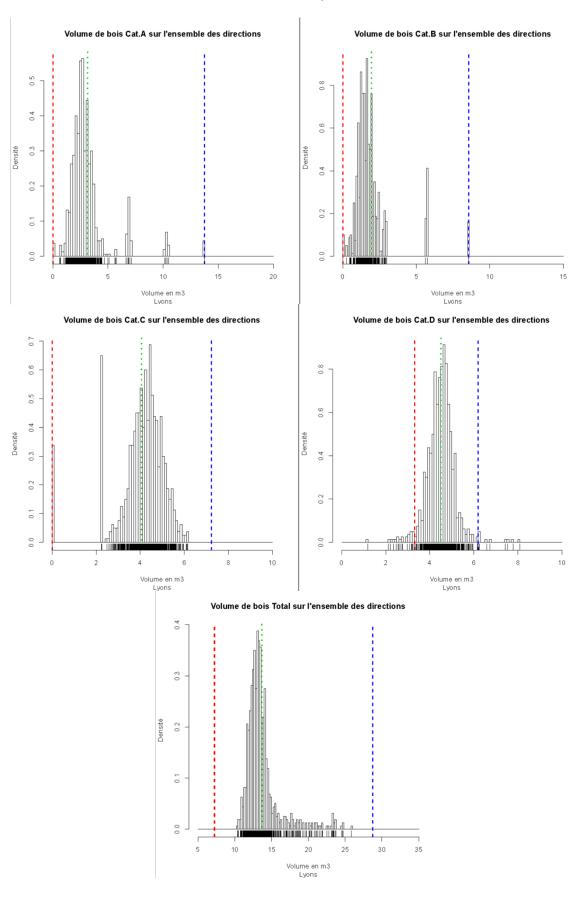

Plantation Bazeuge

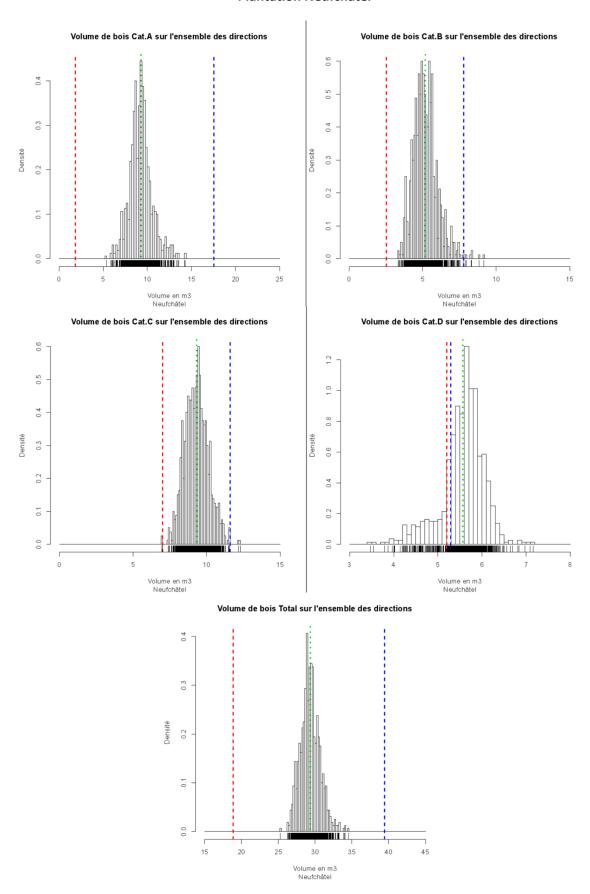

Plantation Bergerac

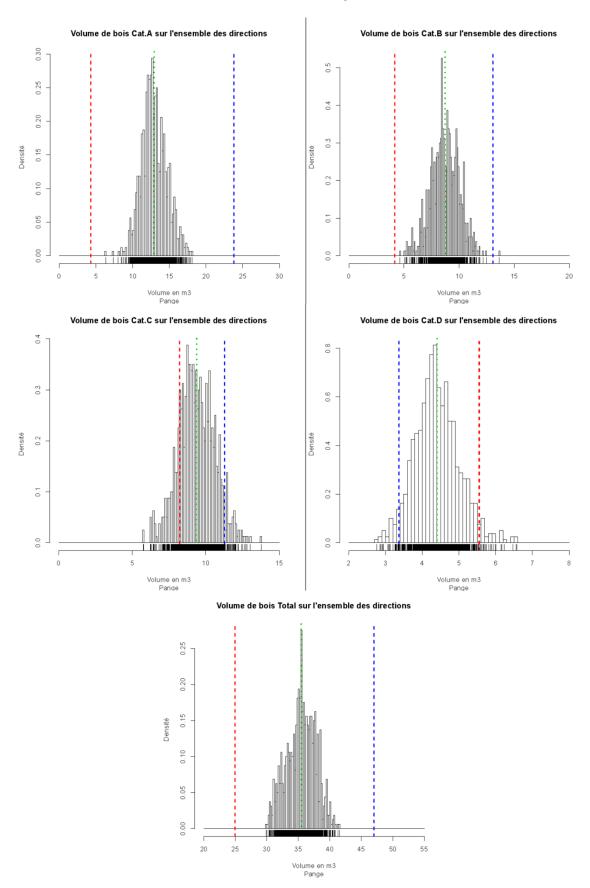


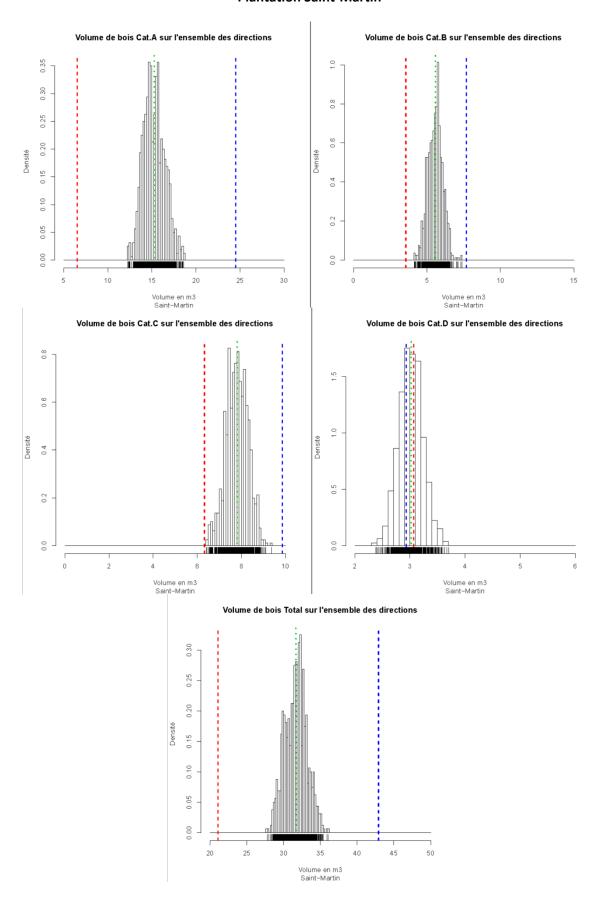

Plantation Bessines

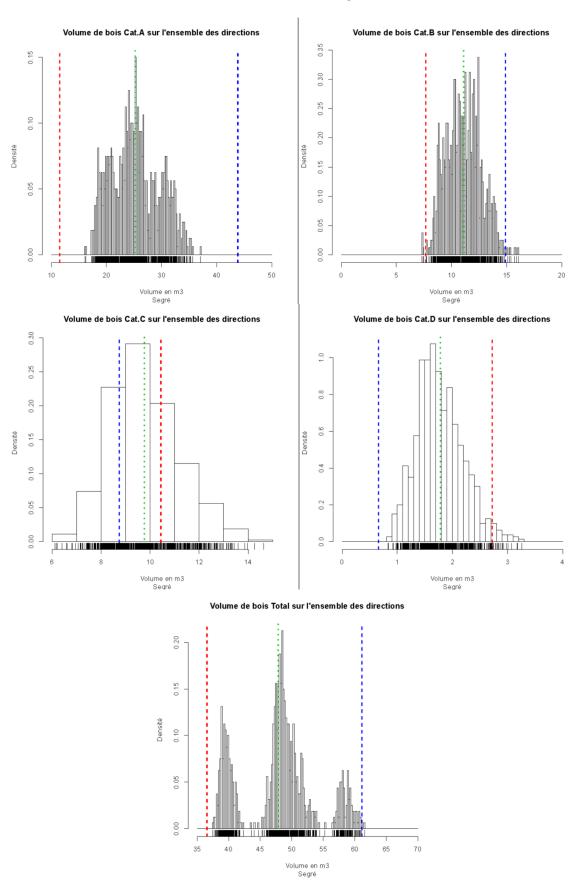

Plantation Boulzicourt

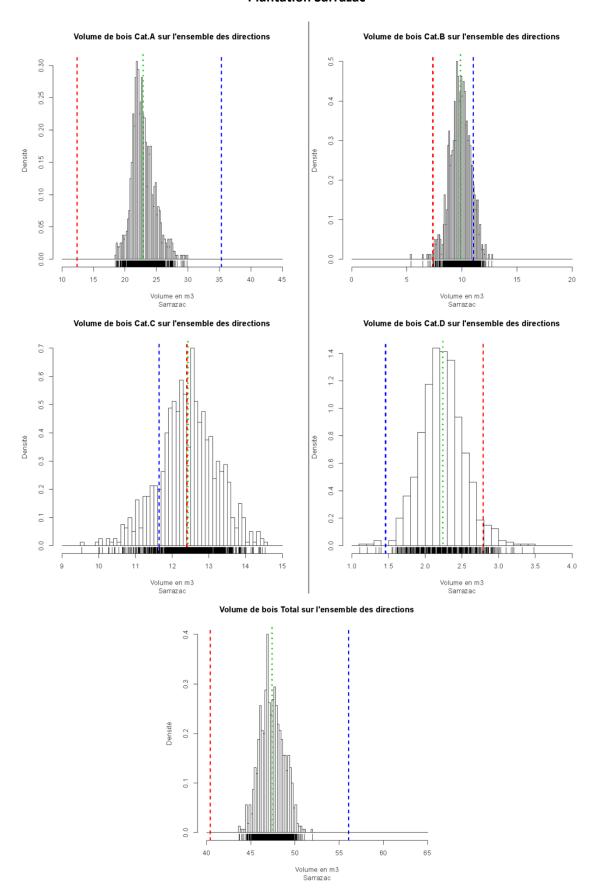

Plantation Douzy

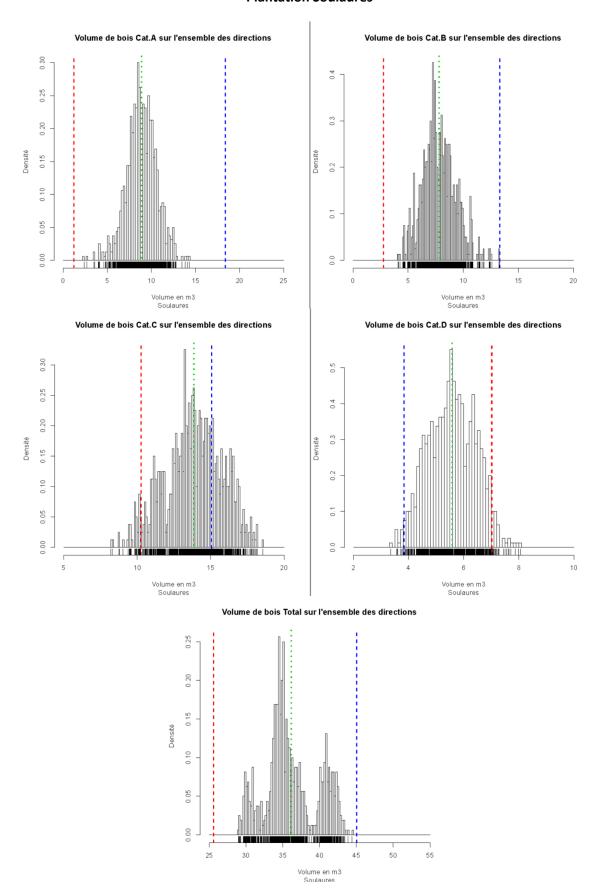

Plantation Havrincourt

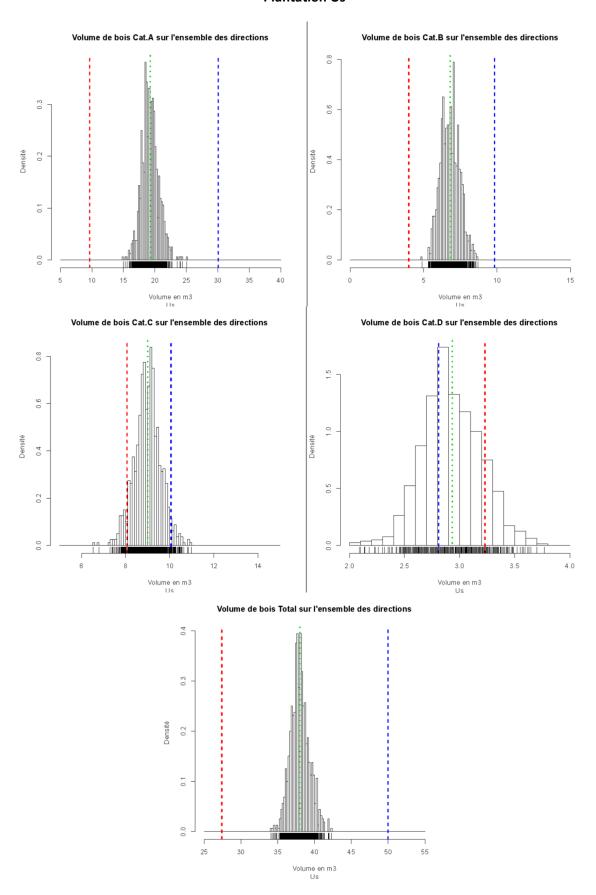

Plantation Lyons


Plantation Neufchâtel


Plantation Pange


Plantation Saint-Martin


Plantation Sainte-Segrée


Plantation Sarrazac

Plantation Soulaures

Plantation Us

Annexe 18 : Tableaux récapitulatifs des 15 plantations

Tableau récapitulatif : plantation Arc

Revenu si selection des meilleurs plants (€)	EVEN U.MBK.	15184	14872	13676	13624	14872	15080	15704	15704	810	930	870	9.5	89	770	8 8	108	138	114	123	120	96	153	18	g	15	14	R	18	on §	R	15937	14675	14535	15818	15880	16688	16588
Revenu séle moyen (¢) meilit	makeun makeu	11024	10894	10348	10348	10192	10270	11232	10666	740	830	829	5 6	88	760	778	156	153	159	156	153	162	156	Z	ฎ	ឧង	2 2	26	22	22 1	22	11841	11346	11296	11160	11248	1276	11622
Revenu si selection des pres plants m (€)	evenu.min rev	88	6916	6916	7202	5356	2290	8 8	2326	980	8	270	280	290	740	8 8	139	177	8 5	198	189	222	153	12	Ħ	¥ 1;	i E	Ħ	F	R;	\$	7888	7911	8186	6367	900	7749	6367
		133	137	132	132	146	147	97 E	147	109	111	106	960	82	100	130	8	84	72	3 %	78	8 8	98	98	20	7. 7.	: 8	2.6	80	8 ['n.	126	7 7	122	131	H 1	126	131
Pourcentage de Pourcentage de Obtenu avec les meilleurs plants par e rapport au volume moyen (%)	Re130,max	ea	en		0	m	4	0 -	. 0	m	2	4	at a		4	a 16		9	se c		st.			١	st	យន		10		D (4 h			a	7 7	m r	2 65
Pourcentage de l'écart du volume obtenu avec les pires plants par rapport au volume moyen (%)	REDO.min		6	ю	ĸ	ľ	'n	8 e	9 8	ā	92	on ;	<u>គ្</u> ទ	11	76	9 8	12	11	138	12	134	137	88	13	16	13	147	13	13	167	200	< r	: 14	: K:	Ψ.	~ 1	~ 1	. 10
Volume moyen si 50 plants (m3)	90	424	41,9	S.	æ	8,7	88 2	43,2	4.4	7,4	κα Εν		7,7		^		5,2	5,1	m, i	4,5	5,4	5,4 4,1	5,2			E, t		1,7	1,5	1. 1.	12	567	547	54,2	53,8	54,2	57,6	100 100 100
Ecart entre le volume obtenu avec les meilleurs plants et celui obtenu avec les pires (m3)	phy	31,6	8,8	26	24,7	36,6	36,5	44.	1 2	1,2	1,6	н ;	9,0				7,7	1,6	g, (25.0		4,7		9'0	1,6	9,0	, t				201	ų k	1 12	23,2	33,1	8 8	8, 18	á ki
Volume si velection des meilleurs plants si 50 plants (m3) c	Ref.max30	58,4	57,2	52,6	52,4	57,72	ER	80,4	804	ĽΣ	9,2	7, 1	4,7 4,1 1,1		7,7			4,3	EQ C	4 4	4	3,2	5,1	1,2	0,7	4,	90	1,3	1,2	9,0	1,3	417	663	66,1	70,3	88 r	725	72,5
Volume si selection des pires plants si 50 plants (m3)	Ref.min30							9 26			9'2		7			5,2						4 r		1,8	2,3	1,6					ľ	414						37,72
Pourcentage c plants contribuant s categories i sélection des meilleurs plant (%)	P.ind.max	Æ	63	59	8	8	8	88	8 6	17	19	19	3 5	14	17	15	11	12	11	12	11	9	12	9	м	9 6	ı ın	7	7	in (1	n d	8 6	86	98	96	76	97
Pourcentage du volume de la catégorie par rapport au volume total si selection des mellieurs plants (%)	.Ref.max	82	82	79	79	81	Eg .	10 E	3	11	11	13	# F	1 8	11	10	ſ,	ın	90	a w	9	4 u		2	7	71 17	1 4	2	2	п		3 5	3 5	8 8	90	8 8	B 8	3
Volume si selection des melleurs plants (m3)	Petimon P.	194	174	164	176	183	175	304		12	M	Fi I	N K	R	26	n	12	13	12	13	12	11 11		4	7	me	m	4	4	7		25, 72	ik	222	22	ž į	8 1	77
Pourcentage de plants contribuant à la catégorie si pas de densification (%)	P.ind.moy		49	47	47	47	47	94 6	8 8	16	17	17	12	17	16	15	14	14	15	15	14	15	14	on.	on.	a (1 0	10	on.	on «	en !	9 8	9 86	100	87	100 0	69	2 20
Pourcentage de plants contribuant à la catégorie si sefection des plines plants (%)	ind.min P.	¥	Ю	Ħ	К	Ħ	ĸ	33	1 12	14	16	16	17	19	15	15	18	16	19	18 1	18	z ;	13	11	14	12	14	13	11	14	13	e 5	1 2	67	26	81	02 1	6 6
Pourcentage du volume de la catégorie par la rapport au volume total si sélection des pires plants (%)	Ref.min F	2	63	62	8	26	22	86	3	17	18	18	1 5	123	18	17	15	14	16	17	16	17		4	ıs	4 r	υ 0	Ф	4	Ф		3 5	8 8	8	100	8 8	8 8	3
Volume si élection des pires plants (m3)	Ref.min P	89	81	M	6	99	В	00 P	3	23	23	ষ।	ĸΚ	R	Ю	23	ฎ	18	ក :	ដ	19	ΝЗ		w	7	ω r	٠.	7	9	to		R R	1 2	144	119	118	143	132
Mayenne des damètres smyten à 10 ans des plants à potentiel (cm)	D.pot.moy	86	7,6	9'6	7,6	7,6	7,6	9	7.6	86	7,6	9'6	7,6	7,6	8,6	a a	86	7,6	e e	y G	7,6	ed e	7,6	g/6	7,6	9,6 7	7.6	7,6	g 6	10 c	7,6	a a	î a	7,6	7,6	7,6	on 0	q,6
Pourcent age moyen de plants à potentiel (%)	P.pot C	79	83	79	79	72	78	200	6.00	79	81	6 1	E K	122	20	10 Z	62	81	92.6	ŭ K	72	23 00	79	79	81	5. 5.	. 12	72	20	120	6/	2 2	1 2	6.	78	12 12	00 1	97
Nombre de plants à potentiel (damètre final > 35 cm)	nb.pot P	132	123	124	133	124	118	136	9	132	123	124	81	118	136	<u>б</u>	132	123	124	124	118	85 K	8	132	123	124	124	118	136	, 10	9 ;	132	174	8	124	118	138	4
Moyenne des chamètres moyen à 10 ans (σπ)	D.moy n	8,2	E,S	00	120	103	ďg	a A	1 11	8,2	E, SI	(2)	ea ne	8,1	8,4	KO K	2,8	na Ev	ea e	a sa	ι, L	κ Α κ	L KB	8,2	E,8	tea te	1 10	8,1	8,4	ι τ	Ľχ	אם אינה) ee	1 103	tes	κ τ.	φ, i	٦ ٢ ٢
Nombre de plants selectionnés di selon la d'rection	nb.plants D.	166	152	156	168	160	151	9 6	8 8	166	152	156	8 6	151	169	9 0	166	152	156	198	151	8 6	20	166	152	156	8 8	151	188	180	2	150	156	168	180	151	B (8 8
Direction de la sélection	Dir.	Horiz1	Horiz 2	vertä	vertiz	Diag. Desc1	Diag. Desc2	Diag.Asc1	Compile	Horiz1	Horiz 2	ira.	Vertitz Diap Descri	Diag. Desc2	Diag. Asc1	Diag.Asc2	Horiz1	Horiz 2	in wertig	Diag. Desc1	Diag. Desc2	Diag.Asc1	Сотріїе	Horiz1	Horiz 2	in with	Diag. Desc1	Diag. Desc 2	Diag. Asc1	Diag.Asc2	compile	Hore 2	inter	vertiz	Diag. Desc1	Diag. Desc 2	Dag.4sc1	Compile Compile
Catégorie du Bois	ā	Ĭ	Í	>		Cat.A D	0	0 0	ı Ø	Ŧ	ľ	> :	Cate		0	0 0	T	Í	> ?	Catc	_	00	ď	T.	I	> 3	Cat.D	۵		0 (9	c I	. 3	. 5	Total	0 (0 (3 0

Tableau récapitulitif : plantation Bazeuge

Bazeuge																						
Catégorie du Bois	u Direction de la sélection	au .30	Mayenne des diamètres moyen à 10 ans (cm)	Nombre de plants à potentiel (diamètre	Pourcentage moyen de plants à	Moyenne des diamètres moyen à 10 ans des plants à	Volume si selection des pires plants (m3)	Pourcentage du Po volume de la catégorie par rapport au volume total si se	Pourcentage de preparets parts plants plants contribuant à la bla catégorie si à catégorie si célection des	**	Volume si c c selection des meilleurs vo	Pourcentage du per volume de la catégorie par rapport au volume total si siention des		10 75	Ecc Volume si volu sélection des meilleurs			41				Revenu si sélection des
_	_	direction		final > 35 cm)	(«) boreine	potentiel (cm)	- E		pires plants (%)	<u> </u>		· ·			-	plants et celui pla obtenu avec les pires (m3)		pires plants par me rapport au volume rai moyen (%)	melleurs plants par rapport au volume moyen (%)	pries plants rr (c)	moyen (4)	meilleurs plants (€)
ă	Dir	nb.pbmt	D.moy n	nb.pot	P.pot	D.pot.moy	Ref.min P.I	P.Ref.min P.i	P.ind.min P.i	P.ind.moy Re	Petimon P.R	P.Ref.mox P.	P.ind.max R	Ref.min.30 Re	Pet.max30 plage			Retto.min Re		revenumin rev		EVEN U.MBK
	Horiz1 Horiz2	187	6,7	Fi F	ឧដ	71,7	۰,	0 4	۰,	el e	ru L	ea ea	η,	0 5	1,3	1,0 E E	9,0	۰,	ž ž	0 k	156	338
	ti Li	2 2) (199	1 2			. 0	. 0	10	1 (1	1 7	11.	ı M	} •	1.4	14	000	٥ م	156	. 0	234	364
	i Lita	2 6	, r	1.5			• •	0 0	0 0	1 1	1 1	11) Pr	, ,	1 .	t 10) č	0 0	2 10		N.K	Ş
Cat.A	Diag. Desc1	190		36		7,11	0	0	0	٧.	4 10	1 ~	חת	0	ν E	ν E	3 8	0	717	0	156	S PR
	Diag. Desc2	157	6,4	ผ			2	tes	7	1	1	m	п	9'0	0,3	0,3	9	130	8	156	130	78
	Diag.Asc1	154	6,7	36			0	0	0	ч.	ı.	7	7	۰	1,4	1,4	90	۰!	233	۰	156	364
	Deg. 45c 2	651		(A)		11,6	7	oa .	H C		-	n	Н Г	e, c	15	ر در 1	A 6	77	8 K	95	166	2 GR
	Horing	202	000	3 8				,		4 6	1.5	F	4 1	,	2 22	2	3	9	2 5	9	8 6	9 6
	Horiz 2	158	, E	in 19			4 1~	Z FA	4	n in	1 E	2 22	- 90	2,2	2,5	0,3 0,3	2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4	8 G	100	2 2 2	8 8	Q 10
	vertü	20	95	13			п	Œ	1	m	4	19	9	0,	2,9	2,2	1,7	4	171	2	170	Si Si
į	vertiz	18		12			0	0 ;	0	m	4	18	0	0	3,1	3,1	1,4	0	22	0	140	310
e di e	Diag. Desc1	190		æ A			4 .	13	1 2	ın ı	13	ឧដ	- 1	1, t	3,4	2,3	2,2	នេះ	155	919	8 8	8 8
	Diag. Desc2	157	6,4	য		7,11	4 4	5 5	m r	ın u	17	8 6	es o	η c	M D	2 5	5, r	R¥	145	8 5	8 8	9 8
	Diag. Asc.2	159		RA			-1 t	7 29	4 4	n 10	t on	3 8	a W	7 2	d 12	, o 0.6	‡ 52	9 18	112	282	₹ Ñ	R R
	compile	20		10					2	4			2	. 0	3,8	3,8	2,2	0	173	0	219	380
	Horiz1	187	6,7	37			14	43	11	14	Z	36	17	3,7	5,6	1,9	4,7	ድ	119	111	141	168
	Horizz	158	6,3	ĸ			7	Ю	9	12	Я	36	18	2,2	6,3	4,1	4,2	22	150	99	126	139
	E É	2 6	ď,	13		11,3	4 r	F 78	9 5	13	r 16	K K	16	2,5 8,5	5 2	2,7	4,2	⊕ K	119	114	126	186
catic	Diag. Desc1	190		36			12	R	1 01	14	7 72	3 8	17	, E,	, rd	7 2,	9,4	. 8	126	96	133	174
	Diag. Desc 2	157		A i	18		# 5	ጸነ	g (12	16	36	15	3,5	5,1	1,6	4,2	83	11	105	126	153
	Dieg. ASCI	154		R K		11.6	H K	ዲ ጸ	on oc	14	27 12	8 8	19	. T	5,7	2, E	4, 4 1, 1	₽€	9 8	3 13	1.38	121
	Compile	20		1 2					on on	13			17	2,2	6,3	4,7	4,4	8	143	99	133	139
	Horiz1	187		37			15	45	74	73	Я	Ħ	7.2	4	5,3	1,3	4,7	ю	113	8	2	30
	Horiz 2	158		FA !			11	43	73	74	14	র ।	72	5£	4,4	e (4	88 3	110	52	8 ;	99
	Ne re	2 16	ξ ₀ ~	13		11,3	о о	56	75	75	~ 10	e %	74	4 6,4	5	1,6	4 N M 15	86	104	Z 8	72	5.6
Cat.D		190		36			15	43	92	74	22	36	73	4	5,3	1,8	4,9	82	118	8	74	52
	Diag. Desc2	157		ผ			10	33	73	74	15	К	75	3,2	4,8	1,6	4	8	120	43	8	7.2
	Diag.Asc1	184		R P	ឧដ	7,11	16	Z5 R	7. [73	19	3 23	2 5	4 p	5,5	o (र र	8 1	108	8 4	72	is h
	Compilé	800	9,9	9 9				3	74	74	1	ň	74	t E	6.2	4 11	t 4 6	8 8	138	46	8 8	0 0
	Horiz1	187	6,7	37		7,11		8	52	66	65	8	66	ia ia	15,8	7	12,3	27	13	M	598	926
	Horiz 2	158	6,3	M		11,7	56	8	S	92	8	100	66	5,2	14,2	9	11,2	73	127	416	582	199
	vert	2	9,5	13		11,3	12	90	52	92	ជ	100	66	e e	e i	6,4	11,6	74	13	222	802	879
į	vertiz	В		12		11,6	H	98	ID ID	m i	n	98	8 :	ia i	161	9'2	12,4	Ð 1	130	183	574	979
9	Diag. Desc2	157		ଝ୍ୟ		11,7	2 5	88	/a 69	an di	8 4	8 8	g	ia ia 4 m	167	5,4	12,3	8 12	124	2 4 8 8	526	R 16
	Diag.Asc1	184	6,	38	8	11,7	R	8	100	. 60	8	8	26	4,8	16,6	2,8	12,4	æ	134	762	8	1008
	Diag.Asc2	159	6,3	ĸ		11,6	ĸ	100	85	92	4	100	66	EQ.	13,8	'n	11,2	S.	123	498	564	8
	сотріїє	20	9'9	10		11,6			86	92			66	8,2	16,6	8,4	11,8	⊕	141	183	586	1008

Tableau récapitulatif : plantation Bergerac

Ветжегас																						
		Nombre de plants	Mayenne des	Nombre de plants à	Pourcentage			Pourcentage du p volume de la catégorie par	Pourcentage de Pourcentage de plants		Volume si	3	Pourcentage de plants contribuant à la se	Volume si Sélection des sé	Ec Volume si vol	Ecart entre le volume obtenu avec les	amlov		-	Revenu si		Revenusi
Bais	sélection	.83	diamètres mayen à 10 ans (cm)	- 1	plants à		pires plants (m3)		catégorie si sélection des			volume total si					0 =	pires plants par mi	meilleurs plants par		Revenu se moyen (€) me	selection des meilleurs plants (€)
		direction				potentiel (cm)		pires plants (%)	pires plants (%)			s	(%)	(E w.)		obtenu avec les pires (m3)						
ŧ	Dir	nb.plamt	D.moy n	nb.pot	P.pot	D.pot.moy	Ref.min	P.Ref.min P	P.ind.min P	P.ind.moy R	Ref.max P.	P.Ref.max P.	ind.max.	Ret.min.30 R	Ref.max.30 pt	X End	8	Retoumin R	Ref30,max	renumin re	revenu en	EVEN U.MOV.
	Horiz1	618	11,1	464	75	12,8		¥	18	24	Ŋ 4	49	R	11,8		8	161	73	133	308	4186	5356
	Horizz	631	ដ	468	74	12,8		33	17	23	Ñ	49	R	11,1	20,	6	15,6	r	133	2886	4056	5226
	vertä	637	ដ	473	74	12,8		32	17	23	Ñ	43	R	10,8	19,6	EQ.	15,2	T	N N	2808	3952	2086
į	vertiz	627	11,1	467	74	128		Ħ	16	23	N N	49	R :	10,6	20,6	ព្	15,6	Ø	132	2756	4056	5386
4.162	Diag. Desc1	8 8	н	457	5. 5	129		32	17	*	Ņ i	ß :	M A	E ;	8 1	on o	19	e (H 1	8 1	4180	5474
	Dag. Desc2	886		458	74			я X	16	53	1 749	ą :	Ri	105	20,5	۲,6	15,4	Ø	점 :	8 1	4004	225
	DBB.ASc1 DBB.ASc2	88 815	11,2 11	459	74	129	151	ጽጽ	18	# 12	7 K	44	P1 P1	125	1961 191	4,7 6,7	16,2	k K	123	00 A	3978	5174 4966
	Compile	20	11,1	33	74				17	23			ค	105	902	10,4	15,7	8	133	2730	4076	5434
	Horiz1	613	11,1	464	75			24	17	18	107	z	18	2,8	5,7	ς,	8,4	88	104	820	840	870
	Horiz 2	631	Ħ	468				Ю	18	18	107	ฎ	18	e Sy	R)	0	e S	100	8	820	820	820
	Verto	637	ដ ុ	473			8	133	16	18	115	52	19	ور	on !	קנ	e i	92	105	790	88	8 1
S E	Vertiz Disp Descri	627	117	457	74	128		¥ 12	17	18	110	4 £	18	na r	ia a	0 V r	in in	88.8	100	8 6	850	930
	Diag. Desc2	88		458	74		105	i N	18	128	108	ដ	13	, m	(I/I	٥	t in	8 8	1 8	850	350	350
	Diag.Asc1	909	1	459	76			22	16	18	113	22	R	7,6	5,6	1,7	8,6	18	108	780	360	83
	Diag. Asc 2	605	# :	457	74			23	16	18	115	23	8	2'2	5,6	1,6	so L	8	109	770	820	83
	Острів	00 00	117	37	74			K	77 K	100	9	,	19	9/2	5,00	1,7	, m	89 8	800	8 8	820	933
	Horiz 1	e no	411	\$ 6	0 7	d,1	751	8 8	8 8	\$ 6	67	8 1	7 7	12,3	T	7,1	d 11	ត្ត ខ	y (B	8 5	a R
	Zalez Werti	637	1 11	473				# #R	R KA	? ক	144	8 6	* F	12.3	11.3	, t	11.7	R E	707	£ £	Ŧ Ñ	a R R
	vertiz	627	11,1	467				R	28	R	136	5e	Ħ	12,6	10,8	1,8	11,7	100	92	378	321	324
Catic	Diag. Desc1	907		457	75			R	15	Ħ	132	56	Ħ	129	10,9	7	911	108	92	18	83	327
	Diag. Desc2	818		458	74	128	154	N A	36	z i	Ħ,	9 29	R (125	209	1,6	7,11	94	E 0	375	8	327
	Diep Asc	98	2,11	459	74			8 %	ዳ 14	* *	13/	3 6	32	12,4	5,11 5,11	7.1	41. 41.	9 5	D 0	7 8	8 K	B 10
	Compile	8	1	ĥ	74				R	×			32	11,5	11,8	50	11,8	66	100	255	382	384
	Horiz1	618	11,1	464	75			7	14	12	R	4	on.	2,3	1,6	0,0	1,9	121	34	Ħ	ĸ	74
	Horiz 2	631	ដ	468				103	15	12	18	4	on.	2,5	1,4	1,1	7	13	02	R	Я	ฎ
	E E	637	ដុ	473		12,8	K F	tes te	16	12	17	M	te d	27.0	u u u	7,5	7 F	133	29 2	4 4 4	32	8 5
cat.D	Diag. Desc1	- 20	11,2	457	75			1 10	16	12	12	m	0 00	2,6	1,2	17	ļ ¹⁷	R	. 8	ጸጸ	. 8	13
	Diag. Desc2	616		458	74			7	14	12	น	4	10	2,3	1,7	90	7	115	50	¥	Я	56
	Diag. Asc1	98	H	459	76			7	15	12	17	m	DO (2,5	1,4	1,1	9,	132	74	RR Y	PA I	п
	Dag.Asc2	egs egs	Ħ ;	78 E	74			_	14	12	R	4	90	2,4	1,6	80,0	7 1	120	0 80	8 8	8 8	4 4
	Horist	000	771	764	, h	471		86	9 8	27 62	212	85	n on	C/2	710	2 20	4 6	9 8	010	t G	272	CE32
	Horie 2	010 631	411	4 4	74		4 t	3 5	0 00	9 10	o K	3 5	a G	, in	4 t4	, K	is to	3 8	110	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2,400	000
	pray	637	1 12	473	74			8	1 16	1 10	526	8	800	23.5	41.3	1, 1,	18	9	110	808	5194	6354
	vertiz	627	11,1	467	74	12,8	427	8	8	100	522	8	98	Ħ	41,6	7,6	97.50	8	110	4003	5.253	6682
Total	Diag. Desc1	90		457	75			8	85	87	513	97	88	34,2	42,3	ďg	18 2,	8	111	4046	5387	6899
	Diag. Desc2	616		458	74			8	24	20	511	90	68	339	41,5	9'2	37,6	8	110	3990	5235	6454
	Diag.Asc1	909	H	429	26			8	82	52	508	90	68	74 p	41,9	2	S.	8	100	4430	5454	5464
	Diag. Asc 2	615	#	457	74	12,8	418	8	en e	52	203	100	9 1	#	41,2	7,7	9/16	81	110	418	5212	623
	alldillo	200	1,11	ñ	t	421			ta	/a			na	ď,	47)	ďa	n,	8	711	0880	800	5000

Tableau récapitulatif : plantation Bessines

Bessines					-									-	-	-	-								
	in the second se			Nombre de plants à	Pourcentage		Volume si	8	Pourcentage de plants	P ourcentage de plants contribuant	Volume si	3	a e	Volume si Volume si eli seli seli seli seli seli seli s	Volume si vol	Ecart entre le volume obtenu avec les	Pc Volume		Pourcentage de l'écart du volume	Revenus			Revenusi		Revenus
Bais		-80	diamètres moyen		plants à	mayen à 10		rapport au	catégorie si	à la catégorie si		_	catégorie si pir			_		obtenu avec les o	obtenu avec les meilleursplants par	selection des pires plants	Revenu s moyen(€) m	selection des meilleurs plants	selection des pires plants	Revenu si	election des meilleurs
				-	potential (%)	potentiel (cm)	(Em.)		selection des dipines plants (%)	8	plants (m3) r	selection des m meilleurs plants (%)	10			obtenu avec les pires (m3)	rapiden rapid	rapport au volume ra moyen (%)	rapport au volume moyen (%)	9		(g)	9		plants (€)
5		o ordere	D.may .	, vorq.	0 105.4	D.sov.may	14 17	1,000,000		, . d.may .	(4)3 m. (3)	, a samijali	al name)21 (Ke-w')21	de operation	DCI. sibr		210(/3)	38.00.00	- W 10 - 30 - 30 - 30 - 30 - 30 - 30 - 30 -	0. 1.000) W. W. V. W. D. C.	EVE = 1, m. = C	0. 1.010	38 to 19 2/01
	Horiz1	層	43	63	3	7,1	31	88	ı	n	ij			lω	34,8		22,4			230	5824	100	230		80
	Horiz 2	183	43	74	₽	7,5	R	4	DC3	22	6	73	R	10	39,6	33,6	225	Ø	176		5850	10296	1560	5850	10296
	Vertit	Ð	4.2	19	41	7,2	7	4	6	22	32	72	R	7,5	34	36,5	20,4	24	167		5304	8			
		10	43	41	¥	7,8	Ø	8	14	22	8	69	R	12,9	31,4	18,5	7,12	æ	165		5642	3164	3354	5642	3164
3		172	4.2	71	¥	^	ĸ	22	g	PQ	114	71	R	on.	33,1	24.1	21,2	\$	138		5512	999	₽ N	5512	39909
	Diag. Desc 2	187	Đ:	7.	₽:	7,4	PA F	នៈ	9 9	1 23	141	74	KR F	1 P	37,7	a i	N i	# :	Ē i		902	9802	R C	982	9802
	Dog.4sc1	8 5	4.1	71	g p	0 V	N F	វីម	2 10	2 02	i i	2 2	K K	N I	N P	24.8 21.8	213	₽K	Į, į	1430	5558	2 %	1430	5538	8/10 8/10
	Compile	8	42	: 8	4	27	9	*	ğ	77	3	2	8 18	200	38,5	34.1	21.8	И	182		2992	10296	1430	5717	10296
	Horiet	1 i	Đ.	63	42	1,7	4	7	m.	9	ង:	on •	on I	1,4	4,4	m	65	18 t	152	81	ñ.	064	91	ñ.	440
	Horiez	1 1 1	g:	74	당 :	5.	ea r	# (9,	Φ (1	a í	o (2,2	eq ·	1,5	g:	R (E 1		8 6	8 5	230	8	8
	it !	e i	42	19	¥ :	7,2	ю.	17	ю.	9 4	uo r	n .	Ω.	3,2	a, i	3,2	ot t	là F	B .		8	6 6	5	Ĥ	f
9	Verti2	ā £	J -	2 5	4 4	ą r	d 10	υū	et u	0 1	~ ħ	na a	o a	e c	η જ	4,5	2 5	2 8	12/	B 6	9 6	9	9 6	9 6	8
		187	1 2		# #	7.4	מינ	19	n	- 40	វក	1 10	o on	12 {	4	24	'n	2 13	3 13		8	9	1 9	8	8
	Dieg.Asc1	151	7	64	#	6,8	Ф	=	4	9	ដ	on.	G)	1,9	4,2	23	52	88	15		Ř	Ą	190	Ř	ð
	Dieg.Asc 2	121	4.2	71	ጽ	7,4	7	11	4	7	16	on	6	1,9	4,4	52	3,2	æ	話			8	190	33	440
	Сопрій	ß	4.2	8	¥	7,3			4	7			6	1,4	6,4	50	3,2	4	200	9	330	640	1 6	38	440
	Horiet	ā i	£.	63	4:	7,1	an Ç	11	on t	ដូ	ស្ន	= :	19	m !	5,1	21	4,2	7.6	12	8 8	128 138	i i	8 8	£1 5	13
	Horiz.	g s	3 :		# 4	0 ;	3 1	4 5	9 ;	21	ם ר		OT U	3 6	7, 5	0:	* "	B P	25		9 12	Ŗ G	10	91	Ŗ
	E to	¥ ţ	7 6	5	# 4	7'7	n 1	1 :	1 1	0 ;	ı Ç	a Ĉ	D y	7,0	1,7	1,1	3.	9 8	ŧ,		e ĝ	8 5	ני	Ş	ţ
otto		172	3 3	7.	# #	ą r~	n r~	1 17	- ю	==	4 9	12	1 12	ţ [7	, M	3.5	3,7	8 %	1 1 1		===	<u> </u>	2.6	11	<u> </u>
	Diag. Desc2	157	43	77	¥	7,4	ces	14	9	12	И	11	17	2,1	5,6	3,5	**	22	140		120	188	8	8	168
	Dieg.Asc1	13 15	1,	64	₽ ;	6,8	۲ :	ម្	901	12	a :	12	S	5	6,1	EQ.	4,1	ir i	100		ĘĮ.	183	69	ij	1
	Ding.Asc2 Compile	181	3 3	2 8	8 8	7,4	9	R	ea ce	= =	17	ch .	12	7 28	6.1	3 3	M M	e G	127	60	113	141	84	111	141
	Horiz1	168	£3	63	42	1,7	Ħ	A	42	36	11	7	R	3,7	3,7	0	3,7	ä	81		29	88	29	29	8
	Horiz 2	183	£3	74	#	7,5	14	Ю	ę	36	14	7	R	3,33	3,8	0	3,8	ä	8	22	23	6	22	22	ß
	Vertil	G	4.2	19	#	7,2	m	A	Q	37	ın	ü	34	3,2	5,3	71	4,2	Æ	13		63	8			
į	Vertiz	ā i	Đ.	₽ ;	# ¥	id L	Φ;	# P	គីន	36	9 0	11 0	# F	62 :	च्या । स्य	6,0	on o	₹ ţ	PJ S	44	20 0	22 [\$ 1	20 1	2 2
		157	, D		# #	7,4	ដុស	A	4	2 22	ន	۸ ه	3 7	, 0	3,7	3 8	4 4	ā 88	3 8		61	i B	3 8	9	i B
	Dieg.Asc1	153	13	64	¥	6,8	#	Ŋ	ş	36	12	ta	R	3,5	3,9	ð	3,7	88	Ð		26	R	52	26	R
	Diag.Asc2	181	4,2	71	R	7,4	12	Ю	R	38	17	on.	R	33	4,7	1,4	4,1	8	115	S	61	8	S	61	8
	Сощрій	ß	4,2	R	41	5,7			R	37			34	29	5,3	24	39	74	136		29	8	44	28	72
	Horiz1	168	4.3	63	42	1,7	24	8	88	79	142	ĝ	91	18,2	S)	8,81	33,2	ĸ	145	_	6296	9696	3016	6296	9696
	Horiz 2	13	E.	74	41	2,5	54	8	8	77	192	8	98	14,8	525	37,7	33,2	10	13		6317	99	1918	6317	98
	Vertit	G .	42	19	당	7,2	17	8	8	78	3	8	28	18,1	16 16	KŲ į	31,9	là l	147		2822	8		į	
,		9 1	m !	4	4 :	ď,	42	8 9	R	27	8R (8	7 6	R ;	6,7	, 10, 1	32,2	95	142		9080	87.37	986	9080	87.37
<u>p</u>		172	2 5	1 2	# ¥	7 7	3 8	3 5	3 3	: P	191	3 8	8 8	17,4	6 T	e o	32	# K	B 6	7 6 7	9000	9 P	267	9000	875 F
	Die Asc1	ğ 15	3 3	64	# #	6.8	88	3 8	6 6	9 72	149	3 8	9 8	0 19 19	010 010 1100	32	32.1	9 8	3 2		9009	9872	874	9009	9872
	Die Asc 2	181	7	71	R	7.4	9	8	. 12	77	184	9	88	135	508	37.3	325	2	8 8		6108	1080	1754	6108	10890
	Commission	8	42	8	끃	73			19	77	ĺ		96	135	525	g g	327	4	161		6157	1088	1754	6191	10889

Tableau récapitulatif : plantation Boulzicourt

¥	×	14		120	9	8	77	8:	860	IR		8	0 th	9	60	08 8	3 6	a	-	16	15	K K	1 8	48	=	9	0 00	111	8	111	117	: 15	2	9	92	7	uo, r	7.00	9
Revenu si selection des meilleurs plants (€)	- CO. T. T. D. C. T. C.	8											_	-											114	•						126		B	1736			141.2	
Revenu moyen (C)		NA.		Ř	384	386	34	9	46	R		R	RA	R	20	R 6	200	3				N A	8 8	237	106	Ş	§ §	108	110	104	116	804	á	89	1069	8	88	8 6	87.2
Revenu si selection des pires plants (C)		٥	•	0	0	0			0	=			8 S				ľ	†				•	įκ		88		114	108		88	112	8 5	1	324				9 19	
Revenu si sélection des meilleurs plants (C)	×54. 4.00	49.4	0	968	8	520	442	520	80	õ	130	8	900	8	80	QR 5	200	a F	16	18	18	Ř	Ŕ	KK.	114	53	D 00	111	ğ	111	117	186	88	623	1736	1382	1316	1412	1736
Revenu moyen (€) r		234	°	R	384	Ŕ	ğ	A	A M	R	8	R	.,				3 5	8 Ř	8	18	Ŕ	Ri A	8 8	Ħ	109	₹ 5	ā 5	Ħ	110	ğ		311	Ŕ	8	1089	æ	88	8 8	900
Revenu si sélection des pires plants (€)	50C+6.5-6	٦	0	٥	0				0	F		-	8 3			91	2 2		114	141	-	Pa f		54	83				-	88	112		131					n m	
Pourcentage de l'écart du volume obtenu avec les meilleur splants par meilleur splants par moyen (8)	(d/Mone)	71	i	130	179	132	921	152	278	136	Ŋ	160	178	177	159	2 2	ig i	54	55	147	143	162	167	171	107	<u>g</u> 3	20 EG	103	92	107	101	136	3 12	135	134	134	60 6	138	147
Pourcertage de 6 décard u volume 11 de pire s plans par me pp re s plans par me moyen (%)	0.00	٥	•	0	0	0	0	0 (0	ន	0	8	FI PR	P	33	R °	9	3 8	9 16	R	54	ΝЗ	t KA	ষ	92	18 Z	2 2	88	10	88	Sin B	8 2	\$ 8B	В	8	В	E :	8 8	8
Pou Volume l'éca moyen si 50 pirre plants (m3) rapp	K/PI DK	60	۰ ا	-	1,4	7	9	7 (3 8	22	80	K)	£ 5	77	12	7.4	***	1,0) re	8,1	9,7	ď.	7,7	75	1,7	9, r	- K	7,7	7,3	69	7.7	183	143	185	199	15,5	183	18,7	18,2
Ecart entre le avolume obtenu avec les meilleurs mi plants et celui p obtenu avec les pires (m3)		10	0	1,8	25	7	1,7	7	72	1,9	1,8	m	5,5 3,1	50	8,3	2,2	* 0	g u	2 (5)	7,7	7,4	9 ;	56	==	1,1	e 1	- °	8	1,1	0,8	0 2	1,0	9.2	129	13,6	129	14,2	1 1 1 1	16,5
Volume si v selection des melleurs plants si 50 i plants (m3)	10 med 0	1.0	0	1,8	25	7	1,7	7	7.7	m	1,8	4	6,4 4,1	3,9	4.3	9,0	4,0	7.4	124	11,9	11,7	128	12	128	9'2	10,2	D, R	7,4	6,7	7,4	8,7	N R	10.4	N	E,7	M,	Ν.	ų ki	1 2,7
Volume si selection des si pires plants si 50 plants (m3)	100 4 91	٥	0	0	0	0	0	0 (0	17	0	-	g T	8	-	1,4	0 0	9 5	9 00	5	5	2 43	b 143	13	6,5	m i	J P	7.7	7,8	9'9	75	0 5	102	121	13,1	122	11,2	11	102
Pourcentage de plants contribuant à la catégorie si sélection des meilleurs plants (%)	7.00 mgc		0	M	4	4	M	4	n m	9	4	on :	100	te	on I	ia c	a k	RF	\$ 15	R	34	ጽጽ	1 PA	34	8	8 (÷ 5	8	8	51	20 20	1 8	8 88	88	8	88	SR 8	i 81	8
volume de la catégorie par rapport au rapport au selectuol si selectuon des meilleurs plants (%)	P. Sect. max		- 1	7	9	tea	7	1 03		12	12	12	₹ \$	\$	77	Ð	6	8 8	8 8	3	8	ត ¥	9 69		R	R F	a F	I FA	F	FQ	E .	ş	8 8	ğ	ğ	ğ	8 8	88	
Volume si selection des meilleurs plants (m3)	Mer Course							02 (សដ				ľ					S. A					9 2					ı						38	
Pourcentage de plants contribuant à la catégorie si pas de densification (%)	P. • G. • G.		0	14	17	17	14	14 .	1 2		17	ın	ou ou	ı	ш	ın ı	1	14	7 2	М	24	2 2	1 2	RI	23	76	នួ	54	57	S	20 0	70 00	92	98	ī	6	to t	g 19	86
Pourcentage de plants contributa à la catégorie si sélection des pires plants (%)	*.eg.m.*								0						7		, L	12	, t	1 #	14	an û	J ma	#	8	E (2 6	8	8	B	B 0							S Ko	92
Pourcentage du volume de la catégorie par rapport au volume total si sélection des pires plants (%)			0	0	0	0	0	0 (5	a	0	DO	E ES	0	19	=	24	† #	9 75	i KR	К	ΝЖ	ŖΝ		72	120	58	R	8	R	88	Ę	3 8	ğ	ğ	8	8 8	3 5	
Volume si selection des pires plants (m.3)	9							0 (m			7 4										9				1 ≝											÷ 4	
Moyeme des deméters des descriptions at deméters safection des moyem à 10 pres plants a pres plants potentiel (cm)	D.mar.may							10,2					103 10,2				101						10,2			e c	10,2	10,2	10,2	10,2	10,2	10,1	95	10,2	10,3	10,2	10,2	10,2	10,1
Pourcentage moyen de plants à potentie (%)	61.	8	12	K	31	31	R	K I	A H	R	16	M	# #	ĸ	31	FQ F	9 R	8 4	8 76	M	31	8 7	i Pi	FF	R	12	ሻም	H	R	31	P4 P	9 F	2 2	ĸ	31	M	R i	K 14	ΡĄ
Nombre de plants à potentiel (damètre final > 35 cm)		Ŗ	on.	9	Ħ	61	R	62	14 21	R	6	91	4 6	ß	62	: N	1 8	R a	ē	#	61	ខេត	វភ	14	R	on i	5 5						ę on	19	7	61	(R)	2 22	14
Moyenne des damètres moyen à 10 ans (m)	7.00	67	6,4	6,9	7	6,9	69	69	n eq	6,7	6,4	6,9	69	69	6,9	on a	40	7,0	4 0 0		6,9	of o	9	6,8	6,7	9 ,0	ח ה	6,9	69	69	on o	4 6	6.4	6,9	7	9	on o	n q	6,8
Nombre de pfants selectronnés de selon la drection	o select	131	54	198	118	197	13	197	2 8	131	54	198	1187	13	197	E 8	R	101	4 5	113	197	<u> </u>	i g	8	131	25	156	197	178	197	E 8	R E	24	196	115	197	2 5	13 15	8
Direction de la sélection	ě	Horiet	Horie 2	Vertit	Vertiz	Ding. Desc 1	Ding. Desc 2	Ding Acc 1	Ung Acc 2 Compile	Ho rie1	Horiz 2	Vertit	Verti2 Diag.Desc1	Ding. Desc 2	Ding Acc1	Ding Acc 2	to mpile	Horie 2	Vertit	Vertiz	Ding.Dexc1	Ding Desc 2	Die Acc	Compile	Horie1	Horiz 2	Vertil Vertil	Ding. Dex.1	Ding.Desc 2	Ding Asc 1	Ding Acc 2	No mpile	Horiz 2	Vertit	VertiZ	Ding.Desc1	Ding. Desc 2	Ding Acc 1	Compile
Cat égorie du Bois		ĺ				Q t					_		Cat.B				Í				Ctc				Ī			9	_			Ī				Ē			

Tableau récapitulatif : plantation Douzy

<u>a</u>																						
Catégorie du Bois	u Direction de la sélection	Nombre de plants sélectionnés selon la	Moyenne des diamètres moyen à 10 ans (cm)	Nombre de plants à potentiel (diamètre	Pourcentage mayen de plants à potentiel (%)		Volume si sélection des pires plants (m3)		Pourcentage de plants contribuant à la catégorie si sélection des	Pourcentage de plants contribuant à la catégorie si pas de	Volume si esélection des meilleurs v plants (m3)	Pourcentage du por volume de la catégorie par rapport au rapport au volume total si silection des	Pourcentage de plants contribuant à la se catégorie si pli sélection des	rs si	Volume si vo sélection des meilleurs plants si 50 pl		Volume 16 mayen si 50 p			Revenu si sélection des pires plants	Revenu s moyen (€) me	Revenu si sélection des melleurs plants
		direction		final > 35 cm)		potentiel (cm)		selection des pires plants (%)	pires plants (%)			50				obtenu avec les pires (m3)		moyen (%)	rapport au volume mayen (%)	€		€
ă	Dir	nb.plamt	D.moy	nb.pot	P.pot	D.pot.moy	Pef.min P	P.Ref.min P	".ind.min P	P.ind.moy R	Pef.mox P.1	P.Ref.max P.	ind.mex. R	Pet.min30 Re	Ref.max30 pl	Digge Add		Retto.min R	Ref30.msk	remumi r		EVEN U.MBA.
	Horiz1	84	1,6		21			6	22	RR 1	287	74	24	15,7	42,7	R	8	# 1	146	4082	7592	11102
	HOFE2	204						9 9	22 5	R F	8	74	0 5	15,4	M .	23,9	ξ K	និ B	144	484	7098	10218
	D	449					147	9 :	S 1	RI	Ŕ	5 1	n i	16,4	43,1	26,7	N	RI	145	4264	77.22	1 20
Cat.A	vertiz Diae.Desc1	474	ת מ	32 8	28	11,4		51	7 7	in in	R R	72	53	15,1	/B / 215	K K	/ K	8 6	143	4264 4264	7462	10322
		481						49	22	33	39.1	73	52	15,7	40,6	24.0	, kl	26	144	4082	7332	10556
	Diag.Asc1	47.2		10 E	58		159	52	* *	RR R	88	73	52	168	41,8	N P	N P	[ភ ត	141	4368	7896	108 68
	Compile Compile	, S		R M				00	2 2	ñ	2/5	1	22	15,7	43,1	j 14	4 kg	8 8	151	38.26	7430	11206
	Horiz1	84					29	19	12	13	58	11	13	9	6,2	0,2	6,2	26	100	8	620	620
	Horiz 2	468			8			15	10	13	7.1	11	16	4,9	9'2	2,7	6,2	æ	123	490	620	780
	werta	449			2 :			17	12	12	25	11	13	5,7	6,3	90	6,1	6 1	103	570	910	630
Cat.B	vertiz Diae.Desc1	474	ת מ	\$ £	28	11,4	9 12	17	# #	13	\$ 6	13	5 5	e, e	5,7	7,1	6,2 6,2	S 68	112	8 2	9 89	8 27
		481		331	8			13	12	12	8	11	13	, sq	6,3	5	6,1	i 83	103	280	900	89
	Diag.Asc1	47.2	1,6	333	20			18	12	12	19	11	13	5,7	6,5	o,	. 6	83	106		8	99
	Diag.Asc2	477		8 8		11,4		14	9 5	13	74	14	16	4,6	10 10 10 10 10 10 10 10 10 10 10 10 10 1	W, V	6,2	74	126	8 8	620	780
	Horiz1	48		323	8 2			8	1 61	19	2	12	R	9'9	69	50	6,7	88	103		22	202
	Horiz 2	468						8	22	8	58	12	18	1,7	6,2	1,5	^	110	89	231	210	186
	vertä	449	9,2	314				23	ជ	8	26	11	18	9'2	6,2	1,4	6,8	112	91	23	204	186
į	Vertiz	0440				11,4	8 8	4 5	22 2	ឧខ	6 6	12	13	84 ,	e e	E (C	r u	ដូន	e e	24 2	210	195
		481		3 25				22	18	8	99	12	, R	, ~	69	5	9,0	1 2	1 8		202	Ŕ
	Diag.Asc1	47.2	16	338	70			R	19	19	63	12	19	9'9	6,7	20	6,7	8	100		200	8
	DBB.Asc2 Compilé	477		8 28		11,4		23	4 2	8 8	8	12	18	7,4 8.6	6,4	- E	e e	100	93	198	8 8	392
	Horiz1	466		323	ľ			11	23	17	17	m	11	35	1,8	1,7	2,7	130	60	52	8	72
	Horizz	468						12	23	18	18	m	13	3,7	1,9	1,8	2,8	132	88	26	42	R
	vertio Citras	449	2,6	314	5 5	11,5	R #	9 5	2 2	17	17	mr	11	N. E.	of t	1,6	7,7	8 8 %	5.2	52	8 £	11
Cat.D		474						ដ	7 7	17	17	nm	17	a M	4 11	1,7	7 17	8 8	6	22	4 8	i Fi
	Diag. Desc2	481						12	23	17	18	m	12	3,7	1,9	1,8	2,3	132	8	26	42	KI
	Diag. Asct	472	ית ת	M K	28	114		9 9	ដ ៖	17	ឧឧ	4 4	M F	M, P	: 13 13 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	ת ר	9,7	n k		4 2	R S	32
	Compile	200		3 %				2	7 77	17	3	,	12	3,2	7 7	े त	2,7	139	72	4 4	4	32
	Horiz1	466		323	2			81	92	36	536	100	-6	इंस	57,6	35 84	44,5	ゼ	128	4932	8454	11956
	Horiz 2	468		330				8	77	86	514	90	96	7,15	54,9	23,2	43,3	73	127	4780	7970	11192
	in series	449	2,6	314	2 5	11,5	N N	8 8	12 P	78 87	516	8 8	9 0	33,1	57,5	24,4	45,3	E 25	127	5114	8576	12050
可口		474		327				8	2.6	190	250	90	97	324	563	239	44.2	73	127	5072	8320	11707
		481		331	8			8	77	36	8	90	96	32,2	55,6	23,4	439	73	127	45	1618	11422
	Diag.Asc1	47.2		3				8	92	52	240	8	97	32,4	57,2	24,8	4 4	77	127	5184	8536	11750
	Diag.Asc2	477	16	8				8	77	99	222	8	90	32,7	55,2	22,5	4	74	13	5231	8200	11144
	ООШФІІВ	2		X.		11,4			11	00			D D	7,1%	21,0	r. Q	£,	7/	130	4777	8294	12050

Tableau récapitulatif : plantation Havrincourt

Javringourt	5																					
		Nombre de	Makenne dec	Nombre de	Pourcentage	Mayenne des	Volume si	Pourcentage du volume de la	Pourcentage de plants			3	Pourcentage de plants	Volume si	Valume si vo	Ecart entre le volume obtenu	Volume			Revenu si		Revenu si
Catégorie du Bois	u Direction de la sélection	sélectionnés selon la direction	C .	potentiel (damètre final > 35 cm)	moyen de plants à potentiel (%)	mayen à 10 ans des plants à potentiel (cm)	election des pires plants (m3)	rapport au volume total si sélection des pires plants (%)	contribuant à la la catégorie si sélection des pires plants (%)	contribuant à la plaint cuntinuairs s'atégorie si à la catégorie si sélection des peres plants (%)	melleurs plants (m3)	rapport au volume total si sélection des meilleurs plants (%)				<u>≅</u> ≅	9 8	obtenu avec les pires plants par rapport au volume moyen (%)	obtenu avec les meilleurs plants par rapport au volume moyen (%)	sélection des pires plants (€)	Revenu s moyen (€) mi	sélection des meilleurs plants (€)
ě	ě	nb.olents	Dmov	nb.not	P.not	D.not.mov	Ref.min	P.Ref.min	P.ind.min	P.int.mov	Per may	P. Perfume	P.ind.mok	Ref.min30 R	Ref.mex.30 of	- *	- 8	R nim or R	Reformer	e we man	- numeron	EVEN U. MEK
i	Horiz1	16	11.4	8	L			25	54	8	g	2	82	l۹	78.2	328	818	Į.		11804	8	70332
	Horiz 2	718	115	299	1 10			100	23	8 8	1132	94	1 100	45,2	287	33,6	627	3 5	127		16146	Z1433
	vertü	730	11,5	610	34			34	54	8	1158	94	34	45,1	79,3	34,2	62,2	73	127	11726	16172	20618
		718	11,5	8			86	34	26	8	1126	94	M	46,6	78,A	ह्य	62,3	K	126		16198	10384
Cat.A		89		553				35	22	8	1050	94	M	46,3	78,5	32,2	62,2	74	126		16172	20410
	Diag. Desc2	715		598				98	26	8	1119	94	m	47	78,2	3,2	62,6	K	13		16276	20332
	Diag. Asc1	572	11,4	554	m m	13,3	98	50 10	50 45	88	1072	96 84	m u	449 454	79,8 79,6	¥ ¥	62,3	2 2	11 L	11674	16198	2748
	Compile	200		42					22	8			100	449	Z 67	34.6	62,3	72	128		16182	Z0748
	Horiz1	229	11,4	280	M			9	7	9	36	m	ın	8,8	7,2	9'0	m	110	06		ă	270
	HOrg 2	718		200				7	- 1	up (Fi i	mı	in i	3,5	2,6	g()	۳, i	113	84		R 1	9 i
	D E	8 5		98	24 2			-	1 00	D U	ጽጸ	m r	in 4	9 ° 6	2,7	3 6	M.	116	60 6		e e	0/2 F
Cat.B		989	114	253		133		Pin	. 10	0 40	8 24	0.4	0 40	4, Z	3,1	9,0	بر 100	93	107	3 8	2 2	310
	Diag. Desc2	715		598				10	9	ш	43	4	Ф	52	m	8	m	66	100		8	8
	Diag. 45c1	672		554			R	9	9	9	R	m	9	2,9	2,8	9	2,9	100	97		80	8
	Diag. Asc 2	713	11,5	595	m n	13,3		10	r 1	uo u	K	m	in 4	3,4	2,5	8.8	m r	113	m 6	R 6	8 8	N N
	Horiz1	677		288				7	11	0 00	R	2	9	3.8	21	17	29	RET	72		87	63
	Horiz 2	718		299				. 60	12	1 00	19	7	4	4,3	1,3	'n	7 2	17	46		34	8
	vertä	730		610				7	11	ta	Ю	2	ın	3,9	1,7	2,2	2,8	13	61		34	51
		718		8	52			7	12	DO	23	7	4	4	1,6	2,4	2,9	PA	25		78	43
Catc		86		223				ea i	12	ka i	2 :	7	in i	47	1,6	5 i	6, ;	141	55		78	45
	Dieg. Desc2	725	115	598	10 10 4 10	N E	D M		# #	ea ce	8 8	7 7	in in	m, m	1 C	2, 2	2, 2, 84, 85	A 64	3 3	117	84 B	7 V
	Diag. Asc 2	713		292				. 103	12	1 10	R	1 72	4	, 4	1,4	52.4	2,4	148	48		87	42
	Compile	20	11,5	42	100	13,3			12	60			ıo	3,5	2,1	1,7	2,9	13	72	114	39	63
	Horiz1	229	11,4	290				2	10	Ð	Ð	п	m	1,3	0,4	бÓ	бÓ	144	44		14	Ф
	Horiza	718		299				7 1	۱ م	ı,	۲ ،	н (m I	1,	0,5	90' 6	80	R I	92		12	tea •
	wertiz	7.18	4115	8 8	8 8	13,3	17 18	7 7	a ta	n In	nΦ	0 4	4 m	2, 1	0,0 5,0	0,0	a a	3 8	γ O2	12 12	12	4 π
Cat.D		89		553				2	ta	Ф	7	1	M	1,1	0,5	9,0	0,8	133	62		12	tea
	Diag. Desc2	715		298	24			7	100	0	Ф	7	M	1,2	0,4	0,8	80	150	20		12	Ф
	Dieg.Asc1	5/2	11,4	554		133		m r	on ex	ID W	ın u	0 -	m M	4,5	0 0 4 5	- K	0, 8	156	4 8	ដ ដ	14	uo u
	Compile,	6 8		42	0 00			•	0 00			•	n m	1, 1	00	90	80	R	62		12	00
	Horiz1	2/9	11,4	88				81	80	88	1128	901	96	53,3	83,4	ผู	88,6	k	122	12268	16468	20671
	Horiz 2	718		299				100	82	68	1196	100	95	54,2	83,3	Ł.	6 6	S.	121		16552	20794
	vertä	8		610	84			100	81	68	1227	90	97	539	Z	30 T	98 9	K	122		16578	Z944
1		718	11,5	8				8	n ea	680	1193	90	66	55,2	E C	er er	æ	8	120		16607	20708
D D	Diag. Desc1	989	11,4	553	E 2	133	785	8 8	8 8	20 00	112	8 8	76	54,2	10 10 10 10 10 10 10 10 10 10 10 10 10 1	e s	88 88 64 L	æ	122	12448	1661	20776
	Die Asct	672		554	1 10			8 8	1 2	0 00	1139	8 8	76	23	348	t e	1 B	9 12	123		16686	2002
	Diag. Asc 2	713		292	E E			100	81	68	1196	100	96	54,4	83.9	N N	89	P.	121		16623	Z994
	Compile	20	11,5	42	10	13,3			123	68			96	53	84,8	आह	689	72	123		16581	21068

Tableau récapitulatif : plantation Lyons

Reveru sélection des molleurs mayen (\$)	: 1	A	575 1248				725 1248		150 250	-	570		50 200						123						66 72		4				1054 1780		
Revenusi selection des pires plants	(9)	EVE-16.77	KE KE						8.8		88								i K						3 83						57.5		
Rev selec	-		572 1248			5702 1248		24 1U56 16 3822	150 250		88		020			132 159 80 87			19	77 27					8.8				8 154		1780	572	
si des Revenu nts moyen (E)		7.010	ks ks	-		8 P													i K						80		-			-	373 10		
Re Sélec pire		-7-3/G	127			178			167	161	741				117	818	157	133	3 3	141								t t t			144		
		(大田)			91	RR				90									8 18									8 8			86		
	-	E N	2.8		13	2.8	52.53	3.1	2 5	3 25	2.5	3 93	93	5 9	7	4,4	1 23	9.5	; Q ;	1 0		-	41								ដ្		
volume volume mysen si 50 dui plants (m3)		ğ	or to		٠. د د		54.				1,5					2,2			3 7				50		90				11.4			108	
Ecart entre le volume obtenu es avec les mellieurs e plants et celui		į	ed to	-		U. 4		_			25							5,2		8,5 6,9									15.8			17.9	
Volume si selection des selection des plants si mellieurs si plants si 50		10,00	98				50.												4 to		41		40								\$7.5 ts		
Volume si Nolume si la sélection des pires plants si S0 plants	s 50 plants its (m3)	9							10 to										3 12						80						7. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.		
lu Pourcentage de plants contribuant à la catégorie si sélection des		7.40 m.s.					FQ F				12								2 2						PI A						88		
a.		P. Sections:					91				n a								ষ						9 F						96		
de Volume si sant selection des meilleurs	8	Er. max	ın m	12	<u>ا</u>	4 4	<u>.</u>	4 W	mm	5	- t-	n m	mr	. 4	12	ŭ.	13	11	12	12 21	8 2	20.5	23	23.7	54	23.5					573		
e de Pourcentage de plants contribuant à la à la catégorie si pas de pas de	pas de densification	, . d. may		0		N +				. 0	21.7	٠	г,		g g	g 0		02 0	9 69	-a ex	្រុ	8 8	25.0	; R	ខេត	22	64	8 8	RE	æ	8 2	ŧ 8	ŭ
Pourcentage de plants contribuent à la cet égorie si	selection des pires plants (%)		e n		10	n O	۰,	20			17				=	40	120	# G	មក:	D	٥.	. 0	77 E	. 12	22	ų	٥	0 0	. 0	0	88		
Pourcentage du volume de la catégorie par rapport au volume total si	volume tocal sélection des pires plants (9																																
Volume si selection des	(m3)						NI		- 17		2.4		-	4 5					22		91 1		na fi								8 %		
Mayenne des d'amètres mayen à 10 ans des plants à	ans des plants a potentiel (cm)	0.0				11.2		11,1								11,1				11,1			11,2					1,11			11,2		
Pourcentage moyen de plants à	patentiel (%)		A R	72	R	a A	RS	a R	H F	A	₽ \$	ı A	A S	B	A	A P	R	១೯	a Pa	A E	le e	B	N 9	A	A S	B	R	9 6	a Fa	Ð	A F	9 9	F
e de S à triel	(gametre final > 35 cm)																		₹ ₹														
Nombre de plants à potentiel (d'amètre			o o	6,6	6,3	2,0	4,0	7 M	E E	9'9	6,0		9,4			6, 6 4, 6							e e						9 9		9,6		
Moyenne des damètres moyen à 10 ans (cm)	a to ans (cm)	D.may					_		I				OP	. 0	188	15 to	g	38	8	ž 8	8 6	17	ğ §	8	86	3 8	麗!	6 t	3 8	100	28	182	8
Moyenne des damètres moyen à 10 ans (cm)	selon la a 10 ans (cm) d'rection	D.may	8 6	71	101	9 5	8	28.2	86 E	17	5 5	1 21	8 5	9	Ī									-	Ν.				Ā	#	- Γ		
Mayenne des damètres mayen à 10 ans (m)	selon la direction	years orders	Horiel 196 Horiez 178			Die Dex 2 179		Compile 50						_		Horiz 1		Diag.Dexc1	Die Acc1	One Acc 2 Compile	Horiet Horiet	Vertil	Verti2			Compile		Horiz 1		120		Ding Age 2	11111

120

Tableau récapitulatif : plantation Neufchâtel

_	_																				
						<u>a</u>		Dourrentige de		Δ.	Pourcentage du p	Pourcentage de			Ecart entre le		Pourcent age de	Pourcentage de			
Direction de la	Nombre de plants	Moyenne des	Nombre de plants à	Pourcentage moven de	Mayenne des diamètres	Volume si		plants pl	Pourcentage de plants contribuant	Volume si				10	2			l'écart du volume obtenu avec les	Revenu si sélection des	Revenu	Revenu si sélection des
sélection	sélectionnés	diamètres moyen	potentiel	plantsà	moyen à 10	res plants		catégorie si	a la catégorie si		15	catégorie si Pi	-	meilleurs	melleurs n	mayen si 50		meilleurs plants par	pires plants	_	meilleurs plants
	direction		final > 35 cm)	potential (%)	potentiel (cm)	(m3)	sélection des pires plants (%)	sélection des pires plants (%)	densification (%)				(m3)	plants (m3) ob	obtenu avec les pires (m3)	_	apport au volume moyen (%)	rapport au volume moyen (%)	(()		ହ
								1		7	┪	_1	-	7	1	7				1	
	nb.plamts C		nb.pot F				P.Ref.min P.	-		a.	-		Ref.min30 Ref.	E)				Refounds	re nu.min		EVEN U.MBA.
Horiz1	8 8	9,7	142	4	10,6	7 A	12	m·	12		4:	ក រ	7 h	15,2	137	7,0	74 F	175	546	2262	3852
20162	200	٩١	4	9 1	100	9 '	† †	1 1	01	g F	7:	4 1	0,2	o o	12,1	n r	Q F	170			R :
verto.	116	ia	B	27	10,5	ID.	11	m	13	ĥ	4	22	2,6	15,9	13,3	9,2	H	173		2392	4134
vertiz	115	7,7	8	51	10,3	4 ;	g ;	mı	133	9 :	\$;	1 23	1,7	17,4	15,7	0 I	17	178		10.48	4524
Dag. Desci	ĝ.	9,7	143	47	10,6	13	12	m ·	12	94	42	71 i	77	15,4	13,3	, KI	*	177		2262	8
Diag. Desc2	# i	ζ. (4)	153	₽ !	305	H	13	4 1	133	96	ą :	ন :	2,4	15,4	13	on ;	Pa l	171		2340	8
Diag.Asc1	충	7,7	143	44	10,6	74	12	m r	12	6 68	42	ุก F	2,3	15,6	133 133 1	on o	R A	175	598	2314	4056
Compilé Compilé	9 05	7.7	727	9 4	105	1	3	n m	12	n h	ť	7 22	17	17.4	15.7	n a	9 2	193		2346	4524
Horiz 1	38	7.6	142	47	10.6	138	16	٠	Q.	42	at	14	m	9	300	5.1	8	138		230	æ
Horiz 2	8 8	ر اد د تط	151	49	10,5	17	14	'n	9 9	4 4	19	12	2,7	4 4	4	ণ থ	28	148		430	710
vertü	116	, cea	8	51	105	9	R	on.	11	15	13	14	4,3	65	2,2	5,5	K	118		220	80
vertiz	115	1,7	8	51	10,3	9	z	6	12	17	19	15	4,3	7,4	3,1	5,9	73	13	430	290	740
Diag. Desc1	306	9'2	143	47	10,6	15	13	5	10	4	R	15	2,5	7,2	4,7	4,8	52	150		480	720
Diag. Desc2	311	7,8	153	49	10,5	15	13	5	10	47	R	16	2,4	7,6	5,2	ın	Ŕ	152	240	8	780
Diag. 45c1	304	1,7	143	47	10,6	19	16	7	11	43	19	14	3,1	7,1	4	5,1	₽	130		510	710
Diag.Asc2	330	84	151	49	10,5	16	13	w	9	4	19	15	2,6	7,1	4,5	4,7	R	151		470	710
сотріїє	20	7,7	74	49	105			9	10			15	2,4	9'2	5,2	5,1	4	149		511	780
Horiz1	92	9'2	142	47	10,6	43	RR	R	*	8	12	Ħ	2	g 6	2,8	S S	82	115		Ñ	Ą
Horie 2	eg.	Z .	151	49	10,5	43	36	ฎ	56	2	Fi i	32	69	11,3	4,4	۲6	92	124		273	P P
verta 1	116	ea r	8 8	2 2	105	5 5	43	FI F	Fi Fi	N 1	N K	KQ F	on o	بر و	0,0	Q (a 8	76,		F	23
Vertitz Dan Descri	30,00	, e	143	2 6	10,5	4 4	6 4	4 14	a k	2 52	RK	4 K	n n	9 2	, C	ų k	in a	100	2/3	8 K	8 8
Diag. Desc2	31	. 12	153	49	105	42	8	R	26	2	R	32	6.0	11.2	4,4	, on	26	124		0/2	336
Diag.Asc1	ğ	7,7	143	47	10,6	47	8	77	×	26	Ŋ	56	7,7	5,6	1,5	8,4	92	110		22	276
Diag.Asc2	310	7,8	151	9	10,5	53	8	Ю	12	62	26	ก	8,6	e	1,4	5,6	93	108	28	276	ğ
сотріїє	20	7.7	24	49	105			ĸ	26			ĸ	6,8	11,3	45	on.	92	126	14	268	338
Horiz1	92	9'2	142	47	10,6	R	¥	22	45	R	13	36	6,2	4,9	1,3	5,5	113	68		82	74
Horiz 2	320	7,8	151	49	105	41	К	26	44	56	13	M	9'9	4,2	2,4	5,4	122	78		81	63
Verta 1	116	ים נים	8 8	22	105	77	9 19	13 F	4 F	12	77	Fr F	٠.	5,2	0 0 1	5,4	ដូន	96	8 5	E 8	82.5
Disp Desc1	306	, ,	143	47	10,0	1 6	9 6	9 6	8 4	3 8	17	7 P	יי ל	J L	3 8	n o	\$ 5	, a		8 28	\$ 5
Diag. Desc2	¥ £	2 14	153	- 4	105	42	1 18	2 2	43	1 92	1 1	· R	98	4 4	2,6	, e	181	1 12	-	3.1	. 19
Diag. Asc1	304	7,7	143	47	10,6	36	M	52	44	R	14	R	5,0	4,9	, 11	5,5	107	89		82	74
Diag. Asc 2	310	7,8	151	49	105	R	32	22	44	Я	13	33	6,1	4,8	1,3	5,4	113	89	92	81	72
сотріїє	20	7,7	75	49	105			23	43			×	4,8	5,2	0,4	5,3	8	98	72	30	78
Horiz1	908	9'2	142	47	10,6	112	8	84	91	226	8	66	18,4	A	18,6	Z'1Z	88	134	1149	3110	5000
Horiz 2	310	8,7	151	49	105	117	90	52	93	232	90	66	18,9	37,9	19	KI E	8	134	122	3174	2080
vertä	116	œ	8	51	10,5	52	90	62	94	35	100	98	22,4	36,6	14,2	SI of	92	124		3305	5135
vertiz	115	27	8	51	10,3	47	100	34	91	89	100	98	20,4	7,83	18,3	8) 9)	₩	131		3489	2628
Dag. Desc1	306	9'2	143	47	10,6	115	8	92	92	23	8	66	18,8	36,8	18	Z,7Z	₩	133		3064	5076
Diag. Desc2	317	7,8	153	49	10,5	115	8	98	93	38	8	66	18,5	8,4	19,9	M A	в	135		3191	5163
Diag.Asc1	ğ	2,7	143	47	10,6	116	8	84	92	223	8	66	19,1	36,7	17,6	FFI	æ	131		3158	5116
Diag.Asc2	310	7,8	151	49	10,5	118	90	52	69	23	8	98	19	37,9	18,9	KI Lí	8	134		3141	5242
) oliverson	0	r	¥1	V	1000			100	92			aa	18.4	100	8	r P	Æ	25.0		000	Pour

Tableau récapitulatif : plantation Pange

Catégorie du	Direction de la	Nombre de plants sélectionnés d	Moyenne des diamètres moyen	Nombre de plants à potentiel	Pourcentage moyen de	Mayenne des dismètres mayen à 10	Volume si c	Pourcentage du Po volume de la catégorie par coi rapport au		Pourcentage de plants contribuant se à la catégorie si	Valume si selection des		Pourcentage de plants contribuant à la catégorie si	Volume si Nelection des sélection des	Volume si vol	Ecart entre le volume obtenu avec les		Pourcentage de l'écart du volume	Pourcentage de l'écart du volume	Revenu si		Revenu si
Bois			à 10 ans (cm)	(diamètre final > 35 cm)	plants a potentiel (%)	ans des plants à potentiel (cm)	(m3)	z 2	categorie si sélection des pires plants (%)	pas de densification (%)		otal si des plants		50 plants si	meilleurs plants si 50 pli	plants et celui pli	moyen si 50 p	_ a	neilleurs plants par rapport au volume		mayen (€) me	melleurs plants (€)
												(%)				pires (m3)		mayen (%)	mayen (%)			
±	Di.		D.moy r	nb.pot	P.pot	D.potmoy R		P.Ref.min P.i	ind.min P.	ind.moy R	Ref.max P.	P.Ref.max P.	ind.max. R	Ref.min.30 Re	Ref.max30 pla	0CA #5		R TO.min R	Re130,max	m.muma.a	1	EVEN U.MBK.
	Horiz1	188	0 0	13		##	17	133	۲,	ឧន	80	46	32	4,5	E, Z	168	12,8	HA A	166	-	3378	22.78
	Vertic	75	מנפ			1 1	7 9	9 6	D 1	4 8	4 14	8 6	3 25	, A	7,77	187	133	8 8	171	1040	3458	7 000
	Ziray	9 8) a			108	o uc	1 2	- 06	9 2	1	46	8 8	t in	ì R) S	122	} म	164		3172	220
Cat.A	Diag. Desc1	186		123		900	18	1 8	100	19	5	\$	R	4,8	20,2	15,4	125	RI	162		320	522
	Diag. Desc2	174		113		11	19	R	Œ	19	6	45	ส	5,5	19,2	13,7	12,6	4	152		3276	4992
	Dieg.Asc1	196	ور ور	138	8 8	11	16	16	۲ ۲	ឧនុ	78 .	4	X 8	4,4	22,22	18,1	13,1	FF F	188	1066	3406	5772
	Compile Compile	20 02		32		1 1	1	à		9 6	7,	3	2 12	3,7	722	9,61	12,6	RA	180		3276	5902
	Horiz1	133		13		11	23	72	13	19	44	26	72	6,1	7,11	5,6	5,6	88	127		926	1170
	Horiz 2	177				11	26	RI	15	19	R	26	23	2,7	10,7	3,4	£(6	K	115		630	1070
	vertä	75				11	ta	น	11	R	Я	R	FI	5,3	13,3	tea	5,6	26	140		920	1330
į	Vertiz	8 5				10,5	υį	12	na Ç	17	3 5	ጸዩ	F2 14	4,2	12,5	na n m n	man ⊾úr	៨៥	151	420	88	120
3	Diag Desc2	174		113		10,7	7 P	58	14	12 12	i R	a ko	2 2	q 6	10,6	d [8	g 10	R K	120		880	1080
	Diag.4sc1	196	, a			11	N	18	13	18	4	I KI	R	4	11,2	4,8	i o	. K	124		8	1120
	Diag.Asc2	180		П		11	18	R	11	19	47	R	12	20	13,1	τχ	2,6	Ħ	142		8	1310
	Сотріїє	20	68		18	11	1	1	12	18	:		М	4,2	13,3	16	a ;	4	148		8	1330
	Hore1	188	on o	9 5	is t	11	RI A	R :	a h	FI F	4:	* :	R F	2.7	109	3,2	46 4	5 5	116	23	Z F	327
	Horez Vertit	775	an in			# F	8 5	2 6	₽ K	7 7	# 5	4 £	4 8	w o	D, R	1,1	on de	¥ ;	107		0/2	8 6
	vertiz	8) on	R		10,8	14	43	R	R	on a	17	23	11,7	7,5	4,2	9'6	122	787	32	188	12
Cato	Diag. Desc1	186				10,	Ħ	36	M	Ŋ	R	22	ค	۲6	10,2	1,1	6,6	24	105		<u>18</u>	306
	Diag. Desc2	174				11	Ħ 1	93	12	12	33	22	FI	of S	5,6	90	2,6	66	103		9/2	58
	Diag.Asc1	196	of o	138	8 6	# 5	K K	X R	Fi R	F1 F3	न ल	៧ ខ	FQ F	a a	Q u	9,	4,0	88 6	103	267	23	14 B
	Compile	8				11			P	12	1		26	7.7	109	3,2	1 6	19	120		274	327
	Horiz1	133			67	11	26	RI	43	26	7	4	10	69	1,9	5	4,4	157	43	-	99	RI
	Horiz 2	177				11	ฎ	75	R	Ħ	90	4	16	ęς	2,8	3,1	4,4	134	28		99	42
	verta !	75	8,6			# 1	on I	KA S	ls i	56	m ·	IN I	15	9 1	2 1	4 !	4,	146	49	8 1	8 1	8 ;
Cat.D	Dian Desci	136		123	8 8	401	· 12	2 2	8 4	1 F	d 60	~ Lr	12	d a	ر در 2	4 4 4	, 4 4	2 1 1	5 84		2 %	3 2
	Diag. Desc2	174	, e	113		11	R	i zi	1 16	i Fi	11	60	18	, R	3,2	2,6	4,4	132	73		99	84
	Diag.Asc1	196		13		11	12	26	41	26	7	4	12	6,9	1,8	5,1	4,4	157	41	П	99	12
	Diag.Asc2	130		116		11	22	75	Ri	RI I	g	9	16	6,1	2,8	E, I	φ.;	138	62		8 3	42
	compile	2	F,S	32		II.			R)	77			a a	N C	2,5	45	44	132	5		8	3
	Hore1	188	00 0	100		1 1	86 6	8 8	10 to	 	173	8 8	80 0	M M	45	Ķ Ķ	K P	2 2	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	2114	4596	706
	in the state of	4	ים ת			1 :	1. 15.	3 8	9 10	7 08	3 6	3 5	9 0	ì	1 1	t "	i s	ŧ e	251		727	3 5
	vertiz	8 8) on	R		10,8	32 2	8 8	6	94	25	8 8	86	26,7	43,3	16,6	, M	3 6	124		4380	67.54
Total	Diag. Desc1	186				10,9	94	97	22	69	189	100	86	K,	45,4	χ	K,	72	123		4477	6850
	Diag. Desc 2	174		113		11	94	8	57	92	148	8	97	12	42,5	15,5	ĸ	4	121		4498	6385
	Diag.Asc1	196	e e			11	103	8	00 00	92	176	8	96	26,3	44,9	18,6	8 9 8	74	126		4645	7201
	Diag. Asc 2	130	σ. « σ. «	116		11	92	8	i 60	92	129	8	60 6	9,6	44,2	18,6	ο, Νί	E 6	127	2026	4406	6810
	compile	20	n/s			11			/0	92			76	\$	8	22	r R	Ð	131		4516	7463

Tableau récapitulatif : plantation Saint-Martin

aint Martin	i i																					
		Nombre de	Management	Nombre de	Pourcentage	Mayenne des	Volume si	Pourcentage du volume de la	Pourcentage de plants			Pourcentage du p volume de la catégorie par	Pourcentage de plants			a n		Pourcentage de l'écart du volume	Pourcentage de l'écart du volume	Revenu si		Revenu si
Catégorie du Bois	lu Direction de la sélection	sélectionnés	damètres moyen	potentiel			sélection des pires plants	rapport au	contribuant à la à la catégorie si catégorie si		10	- 77	catégorie si pir				_	_			Revenu sé	sélection des meilleurs plants
		direction	aro aro	final > 35 cm)	<u>D</u> .	potentiel (cm)	(m3)	sélection des pires plants (%)	😙	densification (%)	plants (m3)		meilleurs plants (%)	So plants pl (m3) pl	plants si 50 pla	plants et celui pl obtenu avec les pires (m3)	plants (m3) ra	au .	rapport au volume mayen (%)	¥		¥
ŧ	jū	nb.olents	D.m.ov	nb.not	P.not	D.not.mov	Ref.min	P.Ref.min	P.ind.min P	P.ind.mov	Per may	P.Ref.mov P.	P.ind.max.	Retuningo Re	Pet.max.30 ob	5	8	Retto.min R	Ref 20,mex	exenumin a	Car nuavan	EVENU.MBA.
	Horiz1	2	61	317		95	96		12	2	192	28	12	lч		144	15.6	¥			99	59.28
	Horiz 2	54		8	2 56				18	Ħ	240	29	R	6,4	22,7	15,7	147	149	157	1664	3666	5746
	vertä	526	5, 6,3	302					12	22	238	54	33	ea	22,6	14,6	15,2	53	149	2080	3952	5876
	vertiz	28	6,2						12	23	249	22	Ħ	7,8	23,1	15,3	15,4	ផ	150	202	4004	9009
Cat.A	Diag. Desc1	573							11	23	275	28	K	7,5	74	165	15,8	4	152	1950	4108	6240
	Diag. Desc2	544		302					11	22	238	54	32	2,7	21,6	14,4	14,6	8	148	1872	3796	5616
	Diag.Asc1	8 5	67	9E	92	76	102	ጸጸ	13	12	261	20	P 2	on u	922 9.55	139	15.9 6.5.5	là ¥	144	2340	4134	5954
	Compilé	20 %	9	Į PA					2 2	22 22	ŧ	ñ	2 22	6,0	0'77 17	17.6	15.2	9 4	158	1664	8 A	6240
	Horiz1	572		317				17	100	11	81	17	15	3,7	7,1	3,4	5,4	8	131	370	240	710
	Horiz 2	544		302				18	69	12	79	17	15	3,9	7,3	3,4	5,6	8	133	80	280	730
	vertä	526						19	Œ,	12	77	17	15	4	7,3	3,2	5,7	72	13	410	570	730
į		8 6				56		22 :	11	# :	8 1	13	12	5,1	9,0	80	ις i	81	107		220	290
9		5/3	T 9	520				A 8	ea o	11	28	B 1	4 1	4 1	η, r	7 P	ກຸ່ມ	e t	123	8 6	8 8	9 8
	Dan Asci	1 8		2 E	200		3 4	19	a ta	1 11	2 2	17	9 5	n m	ď r	0, E	u m	8 66	132	2 8	8 8	8 8
	Diag. Asc 2	547		ğ		46		17	7	11	82	18	16	3,5	7,5	4	5	इ	136		220	750
	Compile	20	6,1	R	95				tes	11			15	3,5	7,5	4	5,5	B	136	320	548	750
	Horiz1	572	9	317	26	56 6		32	ฎ	22	68	19	23	7	7,8	g(o	7,3	96	107	200	219	234
	Horiz 2	544						Ħ	น	23	68	19	8	7,2	8,2	п	1,7	84	106	216	231	246
	ir i	526				56		FR A	18	1 23	10 S	20 1	FA :	6,1	e i	ξ.,	ور ₁	F 8	122	183	23	SE SE
Catic	Diae.Desc1	573	5,7	3 2	200		C 10	2 8	3 65	2 2	26	4 8	\$ KI	- 9	ສຸໝ	_{ار} ۲	7.7	S 18	115	195	222	8 K
	Diag. Desc2	545		302		95		저	19	77	96	77	1 92	65	i ta	2,3	2,6	98	116		12	764
	Diag.Asc1	288	Φ.	319	95 (Я	R	22	93	R	75	6,8	8,2	1,4	7,5	8	109		22	246
	Diag.Asc2	547		쳤		9,4		K	៧	1 23	200	R	지 I	۲,	100	8 ;	9'2	8 8	105	23	18 F	8 1
	Compile	200		9 2				2.5	20	77	22	r	0 5	10	0,0	2 2	0,	8 8	170	COT	97	90
	Horiz 2	544	, °	¥ %			4 4	1 27	3 52	1 12	RN		17	n id	2, Z,	1,5	n m	12	77	9 6	3 13	Ħ Ħ
	vertä	526	5, 6,3					17	M	22	Ю	9	16	3,7	2,4	1,3	3,1	119	77	26	46	36
		88				56		14	*	77	R :	7	19	E,	2,8	9,5	3,1	106	9	20	46	42
9	Diag Desco	573	7. "	302				12	Q K	1 2	1 15	D UD	17	d N	Ç 7	, c	n m	117	2 00	2 22	8 A	R K
	Diag.Asc1	88	Φ.	319		5,6		14	ĸ	z	ผ	Ф	17	3,3	2,5	0,80	2,9	114	36	20	4	RR
	Diag.Asc2	547	9	ğ				16	*	ผ	Ħ	9	18	3,4	2,6	gÓ	m	113	78	51	£	R
	Оотріїе	00		ĸ					М	น			17	m	29	2	m	100	97	45	45	4
	Horiz1	572	9	317				8	Z	92	₽	8	68	22	40,6	18,6	E, 15	ይ	81		48.60	6916
	Horiz 2	₹ 5			2 29			8	18	77	432	90	62	7,7	R/	18,5	Š	R	130		4502	6756
	p to	526		322			E 6	8 8	86	0.0	441	8 8	20.0	22 2	419	19,9	K K	9 6	132	18 PS	4806	8 8
đ		2 6	2,0						6 5	a t	22.0	3 8	n o	7 ^(C) F	700	4 6	ते ह	2 8	737	2/30 A	70 PA	7187
		545		325	2 56	, 0	7	8 8	62.5	76	437	8 8	9 6	i R	40,2	19,3	, g	9 19	131	2490	4619	6646
	Diag.Asc1	286	19	319					8	77	463	90	68	229	40,7	17,8	, E	72	133	2954	4932	8
	Diag. Asc 2	547		ğ					63	77	446	90	06	20,6	40,8	20,2	700	B	133	2330	4619	9908
	сотріїє	20	6,1	Ħ					28	77			96	20,6	41,9	2,13	31,2	88	134	2327	4759	7182

Tableau récapitulatif : plantation Sainte-Segrée

Sainte Segnée	gree			f																		
		Nombrede		a.	Pourcentage	10						Pourcentage du Po volume de la catégorie par	Pourcentage de			a n		Pourcentage de l'écart du volume	Pourcentage de l'écart du volume	Revenu si		Revenu si
Catégorie du Bois	lu Direction de la sélection	50	dametres moyen				sélection des pires plants		contribuant à la a	luant e si	sélection des meilleurs vo	rapport au volume total si		io 22			_		-	sélection des pires plants	Revenu :	sélection des meilleurs plants
		direction	a to ans (an)	(mametre final > 35 cm)	9	ans des prants a potentiel (cm)	(m3)	sélection des pi	. 6	densification (%)			melleurs plants	ma) plants pi	plants (m3) obt	plants et celui pi obtenu avec les pires (m3)	plants (m.s)	a	rapport au volume mayen (%)	(v)		(¥)
ă	į.	nb.plant	D.moy	nb.pot P	P.not	D.pot.moy	Pet.min P.	P.Ref.min P.	ind.min. P.	ind.mov.	Petimen P.R	Ref.mov P.ii	id.iii	Ref.min.30 Ref	Ref.mox30 place	8		Retto.min R	Ref 30,mpx	remumin r	nevenu e	EVEN U.MBK.
	Horiz1	ñ	12,4	뉡	8	9			17		195	69	23	11,1	38,5	Z7,A	24,4	163	158		ğ	10000
	Horiz 2	202		176	52	13,7		Ħ	19	Ħ	145	69	S	12,9	e R	23	24,1	3	149	3354	9929	9334
	vertü	115	12,7	100	23	13,6	R	42	26	42	66	7.2	28	17	43	56	5 ,	6	145	4420	77.22	11180
		111	12,2	92	89	135	26	33	18	K	86	В	21	7,11	7,88	E	B,	46	151	3042	9999	10062
Cat.A		21		213	92	13,6	8	36	ជ	36	181	8	20	13,6	36,1	22,5	24,9	B	145	3836	6474	928
	Diag. Desc2	90		178	99	13,8	S	32	18	Ħ	143	62	69	121	7,7	22,6	23,6	ដ	147		6136	9022
	Diag.Asc1	248	12,7	178	72	138	8 6	দিন	ដ ៩	M E	175	88	8 4	13,7	50 50 50 50 50 50 50 50 50 50 50 50 50 5	น ลั	19,6	ዩኔ	180	354	5096	9178
	Compile	8		42	6	13,6			8	R		2	21	11,1	43	6 12	24,4	16	176		6341	11180
	Horiz1	ğ		215	58	13,6	48	26	19	22	8	น	Ю	5,6	11,9	2,4	10,8	18	110		1080	1190
	Horiz 2	202		176	87	13,7	23	74	19	Ю	8	ក	Ħ	5,6	15,1	e e	121	92	13		1210	1510
	gray :	115		ន្ត :	100	13,6	М	F2 1	1 13	1 52	74 H	17	77	90,	10,4	φ, ;	10,8	ğ I	96	П	1080	1040
Cat.B	Vertiz Diae Desci	E 16	12,2	213	8 6	13,6	4 N	₹ ₹	36 8	7 77	8 6	8 18	4 19	20 P	13.3	2,2	10,6	8 2	138	780	1080	1330
		306		178	99	13,8	R	N	19	*	22	R	R	2,6	13,8	9,4	11,4	B	121		1140	1380
	Diag. Asc1	248		178	72	13,8	42	23	17	*	29	22	Ю	in N	11,9	3,4	9,4	8	127		940	1190
	Diag.Asc2	202		175	63	13,7	23	75	95	М	28	56	RI	2,6	14,4	5,2	911	11	121		1190	1440
	Сотрії	20 1		42	50	13,6	1	1	19	23	ŀ	,	17	7,0	15,1	7,3	11	z į	137	780	1098	1510
	HOTE1	ã		5 55	0 0	13,0	3	4 5	R R	4 P	8 8	17	E .	12,7	n e	a i	a c	8 8	2 6	E 2	4 8	\ \frac{1}{2}
	HOFE 2	202	12,8	178) E	13/		R K	R F	4 5	8 5	12	17	181	4,4) °	e e	# F	8 2	2 6	4 2	192
	vertiz	111		92	8 88	135		1 14	R	28	1 61	14	i R	9 6	, m	, t	4 6	i Bi	. 60		2/2	Ñ
catic		23		213	82	13,6	В	К	23	72	33	12	13	129	6,6	6,3	7,6	133	8		1 20	198
	Diag. Desc2	206	12,7	178	98	13,8	54	Ю	ξć	ล	ᆏ	13	ก	13,1	7,5	9'5	10,3	12	73		ĝ	23
	Diag.Asc1	248		178	72	13,8	8 2	32	K X	กล	ዳዩ	14	1 12	12,1	פל ר בל ב	4,2	8,6	i K	92	363	80 E	23.0
	Compile	8		42	100	13,6			K	N			R	66	9	1,3	56	101	91		134	Ñ
	Horiz1	23		215	32	13,6	16	an	19	11	2	1	m	3,2	0,4	2,8	1,8	178	22		12	9
	Horiz 2	202		176	52	13,7	П	69	18	on.	0	1	0	3,2	0	3,2	1,6	8	0		75	0
	ars.	115	12,7	10g 20g 20g	10 E	13,6	eξ	9 [15	m Ç	el C	e C	Ν.	2,6	0 4 0	2,2	1,5 7,5	173 F	₽°°	ጽቼ	22 15	ΦΟ
cat.D		Ŋ		213	50	13,6		on.	19	11	m	-	m	3,2	90	2,6	1,6	189	32		ĸ	on.
	Diag. Desc2	206		178	98	13,8	12	80	17	on.	1	1	н	2,9	0,2	7,2	1,7	171	12	44	26	M
	Diag. 45c1	248	7,21	178	72	138	19	ea c	9 5	on ç	m .	e (4 4	W, P	9,0	, 15 16 16	र त	E F	43		ដ F	on P
	Compilé	200		42	50	13.6	3	h	19	9 9	•	•	1 7	2,6	90	2	17	153	; K9	7 8	56) on
	Horiz1	ñ		215	59	13,6	184	8	92	96	282	8	100	36,4	27,7	2,2	46,8	ЬG	123	4265	7745	11413
	Horiz 2	202		176	87	13,7		90	94	26	232	90	66	N A	57,4	19	47,7	딦	120		7794	11036
	vertü	115		100	00	13,6	93	100	93	96	13	100	66	404	8	19,6	50,3	80	119		9070	12409
1		111	12,2	92	00	135		8	6	95	E F	90	8	K,	æ	23,4	47,8	74	123		8045	11490
10 12 13 14		i N		Z :	50 1	13,6	133	8 9	60 0	96	P 1	8 9	8 9	37,5	56,6	197	4	8 8	81		7854	10923
	Dieg. Desc.	900		178	9 1	158	154	3 5	26 0	D 0	7 27	3 5	3 8	4/2	2,00	ν st F	4 1, 8	20 00	242	4502	000/	10630
	Dieg. Asc 2	302	123	175	7 10	137	154	8 8	9 6	97	2 22	8 8	8 8	i Pi	56,2	181	47.1	និស	119		7552	10442
	Compile	20		42	85	13,6			92	96			100	38,6	8	24,4	46,6	92	129		7748	12409

Tableau récapitulatif : plantation Sarrazac

Serrazac								-			-	-									-	
		Mombrada		Alembra da		Management		Pourcentage du Provincia de la	Pourcentage de	ale anothern de		-	ap a			Ecart entre le	ă	Pourcentage de	Pourcentage de			
Catégorie du	ō		Mayenne des	plants à	au .	diamètres s	ume si tion des		plants pla		50	catégorie par rapport au	contribuant à la sé		50	2		l'écart du volume l' obtenu avec les	l'écart du volume obtenu avec les	Revenu si sélection des	Revenu	Revenu si sélection des
Bais	sélection	selon la	à 10 ans (cm)	(diamètre	plants à	uns des plants à	plants	volumetotalsi	catégorie si			olume total si	election des	50 plants si pla	_	plants et celui pla	mayen sigo	_			_	meilleurs plants
				final > 35 cm)	potentia (%)	potentiel (cm)	l'eu	sélection des pi pires plants (%)	pires plants (%)	densification (%)	piants (ms) me	meilleurs plants (%)	meilleurs plants (%)		plants (m3) obt	10		rapport au volume n	rapport au volume moyen (%)	<u>©</u>		<u>©</u>
		1		7	1	7	1	1		1	1	7	_[-1	-	-	1	-1			-1	_
ä	ž	nb.plant							ind.min				_		Ref.max.30 pk	6			Re130,max	re e nu.min		EVENU.MBK.
	Hore1 Hore7	362	14,3	318	10 00	140 0 41	200	RF	9	3 3	100	8 8	8 5	12,2	32,6	8	22,4	31 15	146	3172	5824	2476
	i i i	i g	145	1.5	i 66	1 1	i P	3 15	3 2	1 7	98	3 6	1 9	174	i N	1.22	1 12	2 17	146		8136	8970
	i i	1 2	1 5	1 6	6	100	1 5	1 5	i k	t K	3 6	3 2	7	1 2	1 7	74.5	} }	8 8	1 7		975	2 2
Cat.A	Diae. Desc1	363	14,2	319	200	149	9 4	7 12	8 8	RR	232	8 8	3 4	134	* F	18.6	225	5 8	142		5850	8330
	Diag. Desc2	385	14,2	308	69	149	100	36	72	32	8	29	4	14,2	14	145	2 2	88	133		2590	7462
	Diag.Asc1	84	14,3	313	100	14,9	92	32	19	32	22	8	45	129	32,1	19,2	22,5	Ŋ	143		5850	8346
	Diag. Asc 2	348	14,3	ğ	63	15	103	Εń	22	32	198	55	4	14,8	B,A	13,6	22,9	æ	130		5694	7384
	Сотрії	20	14,3	4	62	149			Z	33			43	12,2	345	22,3	225	ST.	153		5856	8970
	Horiz1	362	14,3	318	100 E	149	4 8	7.2	72 23	ឧឧ	99 ×	17	91 5	10,2	4,6	1,7	r, e	ម្ដីន	94	1020	0.6	910
	ži sk	13	145	112	22	151) F4	1 12	22	8	: N	15	17	108	(8)	7 2	40	115	9	-	96	810
	vertiz	13	14.2	113	i 10	149	131	17	14	18	IRI	8	22		103	i in	, td	8	123		330	1080
Cat.B	Diag. Desc1	363	14,3	319	60	14,9	6	23	19	8	74	19	ผ	2'6	10,2	, e1	. g	3,	104	926	980	1020
	Diag. Desc2	88	14,2	306	52	14,9	28	น	17	R	77	ฎ	23	2,0	10,8	2,6	5,6	98	114	820	920	1080
	Diag.Asc1	18	14,3	313	22	149	В	23	19	R	7.2	19	น	46	10,1	1	9'6	88	105		96	1000
	Diag.Asc2	348	14,3	8 S	62	15	29	z	18	8	74	ฎ	22	N.	10,6	17:	46	8 1	113		940	1080
	Сощрії	2 2	14,3	4	Co C	149	000	F	19	R	1	00	ZI F	7	108	. d	56	74	114		948	1080
	TOUR!	202	14,0	97.	3 8	A 6	B t	ì	3 5	R 1	e f	61	য ন	0,41	401	4, L	12,4	er c	4	8 8	7.6	717
	HOFE 2	8 8	14,5	À É) E	144	8 6	2 6	9 %	8 5	e P	9 8	F 6	0 P P	2,11	5,7	12,3	e f	F 6	9 6	8 8	226
	vertiz	a K	14.2	113	è 60	149	K M	1 12	3	t KA	9 15	8 6	1 19	13.6	105	4, E	121	112	0 00	408	363	312
catic	Diag. Desc1	363	14,3	319	100	14,9	107	33	43	K	73	19	R	14,7	101	4,6	12,4	119	81	441	37.2	833
	Diag. Desc2	88	14,2	308	52	149	86	Ю	41	36	78	z	R	13,8	ี่ส	2,8	12,3	112	68	414	38	330
	Diag.Asc1	P4	14,3	313 313	22	14,9	103	36	42	36	73	19	RI	14,4	10,2	4,2	12,4	116	82		37.2	306
	Diag.Asc 2	348	14,3	ğ :	ta	13	96	Ħ	9 :	36	77	22	Ħ 1	13,8	11,1	2,7	12,5	130	68	414	375	333
	COMPIle	2	14,3	4	/8	14,9			41	R S			R	124	11,2	1,2	12,3	TI.	16	37.2	200	220
	Hore1	28. K	14,3	318	2 6	149	4 5	- 0	17	17	9 •	m r		27 E	4, ,	2, F	4 5	ST ST	/9 /4	4 5	32	7 7
	7 5 to 5	, a	7,44	ì	à	n c	\$ 5	9 6	9 F	4 6	9 1	n r	D 10	* 6	1 ,	ď, L	, i	7 (7 6		4 %	9 0
	žina.	2 2	14,2	113	è 63	141	2 6	2 10	7 6	12	nm	N 14	n in	n in	2,1	, E	4, Z	128	200		P P	13
Cat.D	Diag. Desc1	363	14,3	319	00	149	ฎ	7	17	11	10	2	9	2,9	1,4	1,5	27	13	69	4	32	Ŋ
	Diag. Desc2	385	14,2	308	52	14,9	¥	on.	8	13	100	2	9	3,4	1,1	2,3	2,3	148	43	51	Ħ	16
	Diag.Asc1	Ŕ	14,3	313	23	149	23	tea	18	12	ta	2	Đ	3,2	1,1	2,1	2,2	145	00		33	16
	Diag.Asc2	348	14,3	ğ	60	15	23	603	19	12	tes	2	9	E,	ıμ	2,2	2,2	130	20		E I	16
	Оотрів	20	14,3	4	87	149			19	12			Q	29	1,4	1,5	2,2	132	B		33	Z
	Horiz1	362	14,3	318	20	149	200	8	66	90	200	90	8	eq PR	53,6	138	46,7	19	115		7198	9719
	Hore 2	82	14,3	Q Q	0G	149	100	8	66	66	200	98	8	504	51,3	10,8	45 p	88	112		7032	8780
	verta i	R F	145	112	[a [15,1	102	8 9	8 9	9 9	142	9 9	8 9	M I	R ;	15,5	47,2	8 E	117		7466	707
1	vertiz	17	14,2	113	iei	149	8	8	8	8	R	8	B	7,04	535	12,8	47,7	Dig.	114	_	7516	9577
0	Diag. Desc1	363	14,3	6K	1 20	149	Z i	8 8	66 6	8 8	6 F	8 8	8 8	40,2	53,6	13,4	46,8	986	115		7234	9664
	7 550 500	ĝ k	14,2	8 8	à	1 0	4 F	8 8	n s	8 8	Ř	8 8	3 8	e u	/10	121	0,0	àb	110	3	1	0000
	1000	Ř	, t t	e e	2 6	1	À	3 8	n a	3 5	e k	3 8	3 8	0,04	0000	4 5	, u	9 B		_	2 5	0.00
	Onder Ast 2	4 6	14,0	44 44	0 00	140	100	3	n a	8 5	900	8	3 5	t u	r R	15.5	465	8 16	118		7306	10134
	- mdunos	3	1624		i	4			3	3			3	400	3	200	1	1	244		2	

Tableau récapitulatif : plantation Soulaures

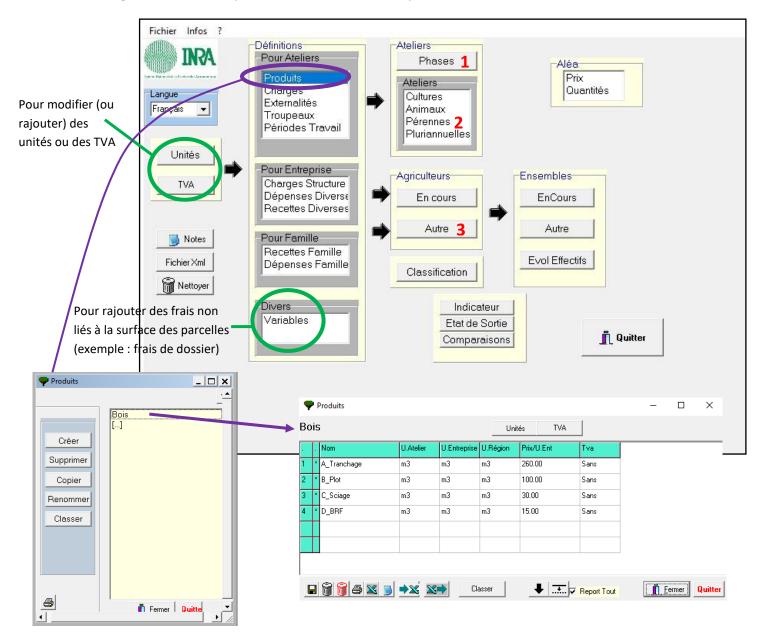
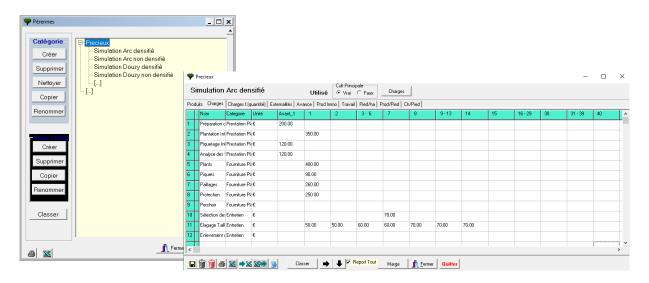
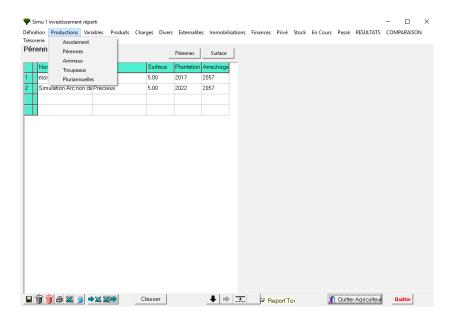

7 V V	×	22	8	98	120	123	2 E	8	요 요		980	1150	8	120	629	90	_	414	Ř	18 E	1 13	8		92	34	1 10	ι N	51	<u> </u>		9	. 19	8:	ρg	100
Revenu s selection des mellieurs plants(©)		4B 2	×	ğ	6963		3848		1090		æ Ē				4	¥		3 %	(199	4 4	4 14	"	u 1						8	Ä	8	908	200	X [3	. 8
Revenu moyen (€)		240	2158	2496	2444	2106	282	2311	8 38 8 38		8 6	200	82	213	426	402		∯ ∯	Ř	D 8	9	69	80	76	35	74	81	77	3745	2200	253	3722	3313	326	3504
Revenusi selection des pires plants (6)	EVEN 2013	884	8	364	99	494	910	364	음.		250	3 8	ĝ	8 8	£3	88		B 5	Ð	Đ ệ	8,8	ģ	10	12	ii ii	1 2	114	102	13.05	121	11.28	12	1302	17.88	11.24
Revenu si sélection des meilleurs plants (C)	Sec 20	4B 2	368	400	4363	3718	3848	400	1090	1070	980	1150	100	120	420	406	ស្ន	414	Ř	525	Ş	39	51	36	34	3	Ð	54	8		98	9083	88	5219	900
Revenu moyen (€)	7,313	240	2158 1820	2496	2444	2106	2392	2209	£ 8	910	86	9 8	ų	8 19	Ð	402	R	8 B	8	P 3	8	8	8 8	æ	K K	7 2	123	Ιά	3745	2 5	3534	372	3313	326	3464
Revenu si selection de s pires plants (E)	D/E=4,m.s	884	8 10	364	690	494	910	234	5 8	710	8 6	}	ĝ	8 8	£3	38	Ā	R 5	Ð	Đ i	Ā	ဌ	H H	12	11 E	1 2	11	102	188 188	1771	2 2	# 19	1302	1738	11.24
Pourcentage de l'écar duvolume l'écar duvolume de l'écar duvolume meilleurs plants par rapport auvolume moyen (%)	-	165	181 21	139	179	177	161	202	140	118	\$ £	5.5	146	157	66	101	118	103 103 103	8 8	ğ	108	57	64	47	5 62	9	26	69	ij.	j į	ā Ř	12	124	3 13	127
Pourcertage de le fécar du volume l'obtenu avec les plants par me moyen (%)		Ж	ដា	ħ	R	PQ	KR FA	g	RR	ks	មួយ	P	8	9 E	ğ	88	120	8 ž	ă	8R Ş	72	55	R E	55	R R	2	141	131	8	e y	eκ	3 12	F 8	3 6	. 22
Po Volume l'éc moyen si 50 pir plants (m3) rapp	R/PI	95	m m r	96	9,6	1,0	9,2	8,6	87.00	9,1	5,6	1 12	7,7	69	14,2	13,4	121	13,4	133	141	133	46	N G	5,1	2,7	, 9	, P.	5,2	36,1	n r	7 88	35,5	33,9	33.7	346
Ecart entre le volume obtenu avec les meilleurs plants et celui obtenu avec les pires (m3)		123	125	16.7	143	12,4	11,3	17,2	99	3,6	6,4	1 10	9,5	7,8	5	0,2	d V	5, 5	17	0,7	4.5	£.	N A A	5,7	δ,g a	ro ro	, å	3,2	14,5	ų i	17.6	16,5	5,7	147	1,01
Volume si vy selection des meilleurs plants (m3)	· DOAR OF	15,7	15.4	18.1	16,8	14.3	14.8	18,1	101	10,7	8,6	11.5	10,5	10,8	14	13,5	14.3	13,8	128	14.2	143	56	et up m'm	24	2 th	i m	m	3,6		6,14 6,14	47.4	6,5	6,19	44.6	639
Volume si selection des s pires plants si 50 plants (m3)	100 4.70	3,4	‡ 9	1.4	Ŋ	6 1	55 gt	8	Ð K	7,1	24	} 15	4	3 24	143	13,3	9,8	133	14	14	86	69	7,7	8,1	e7 7.7	. 66	12	6,8	6 K	n e	2 68	2,4	8,7	4 K	243
Pourcentage de plants contribuant à la catégorie si sélection des meilleurs plants (%)	7 - 10 P. E.C.	Ħ	PO ES	P	PI	Ŋ	RR	PQ	ыч	Ħ	SI F	1 17	B	21 22	8	R	Ħ	8 k	R	4 8	የጽ	12	55 25	12	# 5	14	16	14	88.8	R 8	8 8	8 8	8.6	3 8	88
Pourcentage du volume de la catégorie par rapport au volume total si sièction des melleurs plants (%)	P. Ref. max	R	R M	42	R	34	RA		หห	Ю	ЯR) PS	М	FQ	32	32	K	3 3	1 R	74	1	9			in te				8	3 6	3 9	8	8	3 9	1
Volume si sefection des meilleurs plants (m3)	×8,55	B	۲ t	18	88		8 2		は高	12	# F	3 8	5	ž.	9	64	19	PO NG	8	là G	5	a	19	ı	ա դ	1 1	Ð		152	S. C.	3 €	13 6	197	2 8	ł
Pourcentage de plants contribuant à la catégorie si pas de densification (%)	, ad. mar	15	E C	15	15	12	14	13	14 15	19	12	. 51	15	14	42	3	33	3 K	8	42	3 3	Ю	31	20	2 2	4 8	: R	ผ	86 6	ň	y 0	97	97	2 G	97
Pourcentage de plants contribuant à la catégorie si sélection des pirres plants (%)		9	m N	7	-	M	юm	4	on se	14	in to		100	ID DO	B	#	R	8 8	60	មេខ	8	RR	(9 kg	19	\$ 19	9	3	9	66 E	3 2	5 8	8 8	88.8	R 59	88
volume de la catégorie par rapport au volume total si sélection des pires plants (%)		12	o w	ın	on.	ta	7 7		សស	H	σt	=	14	11	9	22	R	g a	25	æ [1	ষ	PG FA	32	FA FA	R	Р		8	3 5	3 9	1 2	88	3 8	-
Volume si selection des pires plants v (m3) p	, j.	12	۲ 4	m	ü	on.	‡ 18	•	t #	ea.	សដ្	1 12	16	15	S	63	==	A L	99	29	3	24	er on	17	10 M	7 1	38		₫ [g F	1 C	108	Ŋ :	3 5	!
Mayenne des d'amètres mayen à 10 ans des plants à potentiel (cm)	Year, May	12,1	11,7	11.8	12	11,5	11.8	11,8	121	11,3	11.8	1 12	11,8	11.6	121	11,7	11,3	Z, 1	11,8	11.8	11.8	12,1	11,7	11,8	118	1 1 1	11,6	11,8	121	11,7	7 11	12	8,11	2 II	11.8
Pourcentage moyen de plants à ar potentiel (%)		E.	68	13	8	6	Z 6	8	E 19	8	88	2 6	7	68	12	6	B	8 8	6	7.6	8	ß	6 6	B	86	7	6	8	P (ě G	8 63	8 8	6	: 6	8
Nombre de plants à potentiel (damètre final > 35 cm)	1.10.	Ā	g R	7.	E E	盟	5 (\$	34	11 B	R	ĸ Ř	3 5	16	157	133	S.	ĸ	κŘ	2	ā ē	34	13	g r	17	6 5	1 19	167	34	<u> </u>	8 8	RF	: E	8	9 9	34
Mayenne des diamètres mayen à 10 ans (cm) fif	, ray	10,5	10,2	10.2	10,6	103	105	103	10,8	9'6	10,2	9	10,5	101	10,8	10,2	9'6	10,2 2,01	10,	105	103	10,8	10,2	10,2	10,6 6,01	505	10	10,3	108	20,2	5,01	10,6	103	9 9	103
Nombre de plants sélectionnés di selon la direction	o creleto	Ę,	Fi 88	10	197	ĸ	88	8	E P	8	Đ Đ	i K	8	R R	Ę,	Ñ	8	ā ē	K	8 8	8	13	Fig 18	Ð	ē K	8	R	S	ij.	ğ	RĘ	197	18 8	3 8	ន
Direction de la sélection	ě	Horie1	Horiz Z	Vertiz	Diag.Dex.1	Ding.Desc2	Ding Acc 1 Ding Acc 2	Compile	Horie1 Horie2	Vertit	VertiZ Dise Descri	Die Dew 2	Ding Acc 1	Ding Acc 2 Compile	Horiet	Horie 2	Vertil	Verti2 Dise Descri	Dig.Dex.2	Diag Acc 1	Compile	Horie1	Horiz 2	Vertiz	Die Dex 1	Dire dec1	Die Acc 2	Compile	Horiet	72101	Vertil Vertil	Ding.Dex.1	Ding.Desc 2	Die Acc 2	Compile
Caffgorie du Bois	1				Q.						ž							ż							5							Total			_

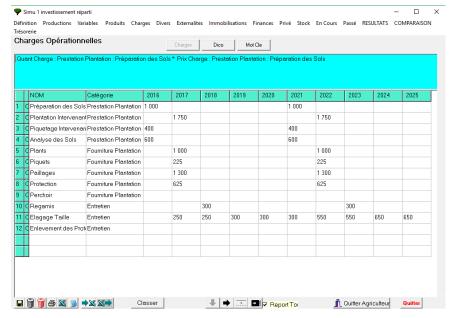
Tableau récapitulatif : plantation Us

Revenu si selection des melleur plants (€)	EVEN U.MBA.	67.34	6136	6E 26	723	7896	6682	6474	7896	950	340	8	8 6	820	98	820	920	5/3 F	6/2	Ŋ	27.3	19 19	188	303	33	42	8 %	32	RR	23	¥ £	7005	7306	7746	8422	3310	7822	0/0/0	8810
Revenu sélec moyen (s) melle	11	5018	4758	4862	4810	5174	4836	4810	4898	029	630	99	88	88	99	99	9	# F	262	273	261	220	264	267	42	4	4 4	42	4	42	4 5	2007	5702	5816	5785	61.27	5780	00/0	5858
Revenu si selection des Ro pires plants mo	remumin revenu	3302	3354	33.28	2470	2900	3068	3172	2470	98	430	370	8 8 8	8 9	450	440	370	₹ F	1 8	120	249	261	246	240	51	\$	946	22	43	51	52	3087	4081	3984	3238	3400	3817	218	32.80
		봈	138	134	150	149	13	R :	157	142	133	133	136	1 8	8	133	146	8 8	9 6	95	106	8 5	108	113	79	76	00 E0	72	86	6	2 5	Į K	121	13	133	138	N F	# P	137
Pourcentage de l'écar du volume cocten avec melleurs pants pars in rapport au volume moyen (%)	Re130,max		_	_		_								_										_					_										
Pourcentage de l'écart du volume obtrenu avec les pires plants par rapport au volume moyen (%)	Ref0.min	æ	K	₩	R	R	В	8 (8 6	150	€	ľ	⊕ ¢	. 8	₩	8	12/12/12	Мä	92	10	88	Si 16	1 66	8	12	103	100	121	110	12	12	Ş K	S SE	K	7.	건	* 1	· ·	4 5
Volume moyen si 50 plants (m3)		19,3	18,3	18,7	18,5	19,9	18,6	18,5	18.8 18.8	6,7	6,3	6,5	9,9	9.0	9,9	5,6	65	q o	0.0	, f	8,7	a 6	i m	9,0	2,8	2,5	2, 2, 0, 18	7 2	2,9	2,8	2, L	3 12	365	36,8	37,1	37,8	36,8	η . R	4 6
Ecart entre le volume obtenu avec les meilleurs plants et celui obtenu avec les pires (m3)	超	13,2	10,7	12,3	18,3	19,6	139	12,7	202	5,7	4,1	5,3	7,4	t eg	4	4,1	5,2	1,	4,4	, -1	g(o	6, 5	1,3	2,7	1,2	0,2	0,0	1,3	6	1,2	2,0	188	15.6	18,5	, g	22,2	17,8	U 25	C 27
Volume si sélection des meilleurs plants si 50 plants (m3)	Ref.max30	e KI	23,6	12	27.33	ัพ	B,7	949	20 K	9,5	8,4	Œ	on t	4 2 8					y on			9,4			2,2	2,8	7,2		2,5	2,2	2, L	450				48,9	455 of n	9 0	484
Volume si sélection des pires plants si 50 plants (m3)	Ref.m		129						2,11				£,4 €,4	4				0 11			E,S			69	w.		M M			3,4		F					FI P		767
Pourcentage de plants contribuant à la catégorie si sélection des meilleurs plants (%)	P.ind.mak		33			•		RI		×	17	19	19	17	18	15	18	i F	1 12	KI	56	Rβ	ιÑ	72	15	18	17	13	16	15	15	20				_	96		y 9
Pourcentage du volume de la catégorie par rapport au volume total si sélection des meilleurs plants (%)	P.Ref.max	55	55	54	58	8	26	54	ñ	R	R	R	19	18	19	18	۶	8 8	8 8	18	19	8 F	R		2	io i	no on	4	9	ın	ın	96	8 8	92	100	97	8 8	88	3
Valume si selection des melleurs plants (m3)	Ref.max.	178	163	175				167					8 (8 8				3 6			15		19			15		222						2 6	
Pourcentage de plants contribu ant à la categorie si pas de densification (%)	P.ind.moy	Fi	26	26	26	ĸ	56	26	72	14	13	13	14	13	14	13	13	4 F	3 62	23	56	F1 F3	32	26	디	2	2 2	1 22	22	22	2 5	7 00	3 63	100	23	200	00 0	9 6	0 00
Pourcentage de plants contribuant à la catégorie si sélection des pires plants (%)	P.ind.min	18	18	17	14	15	17	17	16	tea	on.	D)	an Ç	o o	on.	a	on F	\$ K	ষ	ผ	Ю	56	М	Ю	M	Fi	RI R	I R	Ħ	R	RF	3 2	5 6	78	79	20	9 %	n c	20 00
Pourcentage du volume de la catégorie par crapport au volume total si sélection des pires plants (%)	P.Ref.min	45	45	46	ĸ	33	42	43	4	14	15	14	16	16	16	16	۶	1 8	เล	36	M	គុខ	18		12	11	11	13	12	12	13	٤	8 8	90	90	8	8 8	3 8	3
Volume si selection des pires plants (m3)		52	68	68	93	2	80	122	Đ	26	R	56	a k	8 8	R	Ħ		à E	2 90	8	28	8 2	120		23	Ħ l	2 2	K	22	23	М	107	199	193	178	187	191	087	193
Mayenne des d'amètres mayen à 10 ans des plants à potentiel (cm)	D.pot.moy	of Ed	9,8	10	of G	9,8	e e	10	o so	9,8	, to	ta ta	an n	a sa	id id	ď.	α c	n o	a ta	, sa	ď.	מס נפ סק נפ	i m	9,8	9,8	or i	eq or	, m	e of	eq.	on o	0 00	່ຄ	101	of St	e s	od n	9 0	a m
Pourcentage mayen de plants à potentiel (%)	P.pot	6	В	В	В		99		99	69			B 6				8 0	6 H				99		99			18 16				99		5 1 8			6			9 6
Nombre de plants à potentiel (damètre final > 35 cm)	nb.pot	82		228		233		222		"			222			14		5 L				K E		33			22.22				232	ľ					1 2		33
Moyenne des damètres moyen à 10 ans (cm)	Dmoy			7	7.1	2,7			77	7.1	47		4,5		. ~				۲.			47		7,1				7,7			4,7		1 7	. ~			4, 4,		4.6
Nombre de plants selectionnés selon la direction	nb.plants	343	345	349	333	8	젔	336	20 02	343	24K	88	E 6	8 8	336	35.2	20 5	£ 5	£ #	333	8	8 %	82	20	343	55 55 57	33 28	Ŕ	84	336	352	2 2	£ ¥	329	333	380	8 %	P . K	20.52
Direction de la sélection	Dir	Horiz1	Horiz 2	vertü	vertiz	Diag. Desc1	Diag. Desc2	Diag.Asc1	Ompilé Compilé	Horiz1	Horiz 2	vertä	Vertiz Pin Perci	Diag. Desc2	Diag.Asc1	Diag.Asc2	Compile	Horis 2	vertä	vertiz	Diag. Desc1	Diag. Desc2	Diag. Asc 2	сотріїє	Horiz1	Horiz 2	Verta Vertiz	Diag. Desc1	Diag. Desc 2	Diag.Asc1	Deg.Asc2	Horiel	Horiz 2	vertä	vertiz	Diag. Desc1	Diag. Desc 2	Dieg. Asc.	Deg. Asc.2
Catégorie du Bols	П					Cat.A				Ī			į				Ť				Catc							Cat.D				T				Total In			

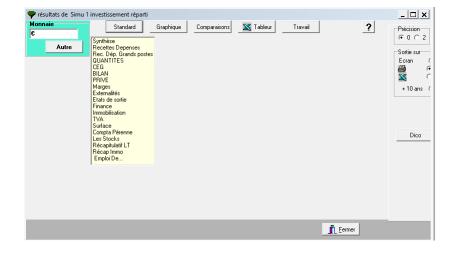
Annexe 19 : Guide pratique d'utilisation d'Olympe


Le logiciel Olympe se présente de la manière suivante. S'il est associé avec la base de données créée, les captures écrans seront identiques à vos fenêtres. Dans le cas contraire, les catégories n'existeront pas et les tableurs seront simplement vides.


L'interface principale donne accès à toutes les fenêtres modifiables. A noter que pour le moment il ne s'agit pas d'une exploitation mais de la base de données. Pour chaque élément, on peut ouvrir, en cliquant dessus, une fenêtre répertoriant des catégories (par exemple, Bois pour les produits, ou Prestation Plantation, Fournitures Plantation et Entretien pour les charges). Créer une catégorie donne accès à un tableur dans lequel il est possible de rentrer des intitulés d'éléments en renseignant l'unité dans laquelle ils seront exprimés (en distinguant si l'on est au niveau d'une parcelle, de l'exploitation ou d'un groupement d'exploitation).


Le bouton Phase (1) permet de déterminer les différentes périodes d'une plantation. Par définition, une phase est composée d'une ou plusieurs années dont on peut considérer que les charges (et les recettes) sont identiques).

Les plantations types sont accessibles par le bouton Pérennes (2). Il est possible de copier entièrement une plantation et d'en modifier que quelques éléments dans le tableur. Par définition, ces plantations correspondent toujours à 1 ha (et ici avec une densité finale de 50 plants par ha). Pour rajouter des lignes dans le tableur, il faut utiliser le bouton Charges, et sélectionner la charge à considérer (idem dans l'onglet Produits avec le bouton Produits).


Une fois les plantations types définies, il est possible de créer un nouvel agriculteur grâce au bouton Autres (3). Une nouvelle fenêtre s'ouvre. Dans l'onglet Production/Pérennes, on définit les plantations de l'exploitation à partir des plantations types en indiquant la surface ainsi que l'année de plantation et l'année d'arrachage visée. Dans l'onglet Définition, on peut définir l'année à partir de laquelle on veut faire les simulations.

Dans l'onglet Charges/Opérationnelles, on obtient un aperçu des charges sur 10 ans (à partir de l'année indiquée précédemment). Il s'agit d'une fenêtre de visualisation, aucune modification n'est possible.

Il est possible de traduire ces résultats sous forme de graphiques ou de résumé par année par l'onglet RESULTATS qui ouvre une nouvelle fenêtre. Tout un panel d'éléments à afficher est prédéfini, dont des bilans financiers.

